BI 1015550 Improves Silica-Induced Silicosis and LPS-Induced Acute Lung Injury in Mice
Silicosis is an interstitial lung disease (ILD) caused by prolonged inhalation of silica particles. Acute lung injury (ALI) is a critical clinical syndrome involving bilateral lung infiltration and acute hypoxic respiratory failure. However, there is currently no effective treatment for these two di...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/6/1311 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Silicosis is an interstitial lung disease (ILD) caused by prolonged inhalation of silica particles. Acute lung injury (ALI) is a critical clinical syndrome involving bilateral lung infiltration and acute hypoxic respiratory failure. However, there is currently no effective treatment for these two diseases. Previous research has established that cyclic adenosine monophosphate (cAMP) is pivotal in the pathogenesis of silicosis and acute lung injury. Phosphodiesterase 4 (PDE4) is a hydrolase enzyme of cAMP, and BI 1015550, as an inhibitor of PDE4B, is expected to be a candidate drug for treating both. BI 1015550 has shown certain anti-inflammatory and anti-fibrotic properties in systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF), but there is a lack of research on silicosis and acute lung injury. In this research, we successfully synthesized BI 1015550 autonomously and demonstrated that it could significantly improve lung fibrosis and inflammation in a silica-induced silicosis mouse model. Furthermore, we found that BI 1015550 could also alleviate lung inflammation in a Lipopolysaccharide (LPS)-induced acute lung injury mouse model. The mechanism of action may involve the regulation of cAMP-related signaling pathways. |
|---|---|
| ISSN: | 1420-3049 |