BI 1015550 Improves Silica-Induced Silicosis and LPS-Induced Acute Lung Injury in Mice

Silicosis is an interstitial lung disease (ILD) caused by prolonged inhalation of silica particles. Acute lung injury (ALI) is a critical clinical syndrome involving bilateral lung infiltration and acute hypoxic respiratory failure. However, there is currently no effective treatment for these two di...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuming Liu, Jing Zhang, Yayue Hu, Zhigang Liu, Zhongyi Yang, Ran Jiao, Xueze Liu, Xiaohe Li, Feng Sang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/6/1311
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicosis is an interstitial lung disease (ILD) caused by prolonged inhalation of silica particles. Acute lung injury (ALI) is a critical clinical syndrome involving bilateral lung infiltration and acute hypoxic respiratory failure. However, there is currently no effective treatment for these two diseases. Previous research has established that cyclic adenosine monophosphate (cAMP) is pivotal in the pathogenesis of silicosis and acute lung injury. Phosphodiesterase 4 (PDE4) is a hydrolase enzyme of cAMP, and BI 1015550, as an inhibitor of PDE4B, is expected to be a candidate drug for treating both. BI 1015550 has shown certain anti-inflammatory and anti-fibrotic properties in systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF), but there is a lack of research on silicosis and acute lung injury. In this research, we successfully synthesized BI 1015550 autonomously and demonstrated that it could significantly improve lung fibrosis and inflammation in a silica-induced silicosis mouse model. Furthermore, we found that BI 1015550 could also alleviate lung inflammation in a Lipopolysaccharide (LPS)-induced acute lung injury mouse model. The mechanism of action may involve the regulation of cAMP-related signaling pathways.
ISSN:1420-3049