A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems

We define linear programming problems involving trapezoidal fuzzy numbers (LPTra) as the way of linear programming problems involving interval numbers (LPIn). We will discuss the solution concepts of primal and dual linear programming problems involving trapezoidal fuzzy numbers (LPTra) by convertin...

Full description

Saved in:
Bibliographic Details
Main Authors: Ladji Kané, Daouda Diawara, Lassina Diabaté, Moussa Konaté, Souleymane Kané, Hawa Bado
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2021/5564598
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850233610823532544
author Ladji Kané
Daouda Diawara
Lassina Diabaté
Moussa Konaté
Souleymane Kané
Hawa Bado
author_facet Ladji Kané
Daouda Diawara
Lassina Diabaté
Moussa Konaté
Souleymane Kané
Hawa Bado
author_sort Ladji Kané
collection DOAJ
description We define linear programming problems involving trapezoidal fuzzy numbers (LPTra) as the way of linear programming problems involving interval numbers (LPIn). We will discuss the solution concepts of primal and dual linear programming problems involving trapezoidal fuzzy numbers (LPTra) by converting them into two linear programming problems involving interval numbers (LPIn). By introducing new arithmetic operations between interval numbers and fuzzy numbers, we will check that both primal and dual problems have optimal solutions and the two optimal values are equal. Also, both optimal solutions obey the strong duality theorem and complementary slackness theorem. Furthermore, for illustration, some numerical examples are used to demonstrate the correctness and usefulness of the proposed method. The proposed algorithm is flexible, easy, and reasonable.
format Article
id doaj-art-0c93ce8a66034fd6af1ae383e505e552
institution OA Journals
issn 2314-4629
2314-4785
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-0c93ce8a66034fd6af1ae383e505e5522025-08-20T02:02:54ZengWileyJournal of Mathematics2314-46292314-47852021-01-01202110.1155/2021/55645985564598A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming ProblemsLadji Kané0Daouda Diawara1Lassina Diabaté2Moussa Konaté3Souleymane Kané4Hawa Bado5Department of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, MaliDepartment of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, MaliDepartment of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, MaliDepartment of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, MaliDepartment of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, MaliDepartment of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, MaliWe define linear programming problems involving trapezoidal fuzzy numbers (LPTra) as the way of linear programming problems involving interval numbers (LPIn). We will discuss the solution concepts of primal and dual linear programming problems involving trapezoidal fuzzy numbers (LPTra) by converting them into two linear programming problems involving interval numbers (LPIn). By introducing new arithmetic operations between interval numbers and fuzzy numbers, we will check that both primal and dual problems have optimal solutions and the two optimal values are equal. Also, both optimal solutions obey the strong duality theorem and complementary slackness theorem. Furthermore, for illustration, some numerical examples are used to demonstrate the correctness and usefulness of the proposed method. The proposed algorithm is flexible, easy, and reasonable.http://dx.doi.org/10.1155/2021/5564598
spellingShingle Ladji Kané
Daouda Diawara
Lassina Diabaté
Moussa Konaté
Souleymane Kané
Hawa Bado
A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems
Journal of Mathematics
title A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems
title_full A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems
title_fullStr A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems
title_full_unstemmed A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems
title_short A Mathematical Model for Solving the Linear Programming Problems Involving Trapezoidal Fuzzy Numbers via Interval Linear Programming Problems
title_sort mathematical model for solving the linear programming problems involving trapezoidal fuzzy numbers via interval linear programming problems
url http://dx.doi.org/10.1155/2021/5564598
work_keys_str_mv AT ladjikane amathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT daoudadiawara amathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT lassinadiabate amathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT moussakonate amathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT souleymanekane amathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT hawabado amathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT ladjikane mathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT daoudadiawara mathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT lassinadiabate mathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT moussakonate mathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT souleymanekane mathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems
AT hawabado mathematicalmodelforsolvingthelinearprogrammingproblemsinvolvingtrapezoidalfuzzynumbersviaintervallinearprogrammingproblems