Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications

Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therap...

Full description

Saved in:
Bibliographic Details
Main Authors: Mariam Rima, Mariam Dakramanji, Elie El Hayek, Tia El Khoury, Ziad Fajloun, Mohamad Rima
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844025008898
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therapeutic applications. EVs manage numerous physiological processes by transferring bioactive molecules, including proteins, lipids, and nucleic acids, between cells. This review delves into the factors influencing the properties of EVs, such as temperature and stress conditions, which collectively influence their size, composition, and functional attributes. We also describe the emerging roles of EVs, emphasizing their involvement in microbial interactions, immune modulation, antimicrobial resistance spread and their potential as innovative diagnostic and therapeutic instruments. Despite their promising applications, the advancement of EV-based therapies faces several challenges, which will also be discussed. By elucidating these critical elements, we aim to provide a comprehensive overview of the transformative potential of EVs in revolutionizing diagnostics and therapeutics in medicine.
ISSN:2405-8440