Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications
Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therap...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844025008898 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therapeutic applications. EVs manage numerous physiological processes by transferring bioactive molecules, including proteins, lipids, and nucleic acids, between cells. This review delves into the factors influencing the properties of EVs, such as temperature and stress conditions, which collectively influence their size, composition, and functional attributes. We also describe the emerging roles of EVs, emphasizing their involvement in microbial interactions, immune modulation, antimicrobial resistance spread and their potential as innovative diagnostic and therapeutic instruments. Despite their promising applications, the advancement of EV-based therapies faces several challenges, which will also be discussed. By elucidating these critical elements, we aim to provide a comprehensive overview of the transformative potential of EVs in revolutionizing diagnostics and therapeutics in medicine. |
---|---|
ISSN: | 2405-8440 |