High-Fold 3D Gaussian Splatting Model Pruning Method Assisted by Opacity

Recent advancements in 3D scene representation have underscored the potential of Neural Radiance Fields (NeRFs) for producing high-fidelity renderings of complex scenes. However, NeRFs are hindered by the significant computational burden of volumetric rendering. To address this, 3D Gaussian Splattin...

Full description

Saved in:
Bibliographic Details
Main Authors: Shiyu Qiu, Chunlei Wu, Zhenghao Wan, Siyuan Tong
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/3/1535
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advancements in 3D scene representation have underscored the potential of Neural Radiance Fields (NeRFs) for producing high-fidelity renderings of complex scenes. However, NeRFs are hindered by the significant computational burden of volumetric rendering. To address this, 3D Gaussian Splatting (3DGS) has emerged as an efficient alternative, utilizing Gaussian-based representations and rasterization techniques to achieve faster rendering speeds without sacrificing image quality. Despite these advantages, the large number of Gaussian points and associated internal parameters result in high storage demands. To address this challenge, we propose a pruning strategy applied during the Gaussian densification and pruning phases. Our approach integrates learnable Gaussian masks with a contribution-based pruning mechanism, further enhanced by an opacity update strategy to facilitate the pruning process. This method effectively eliminates redundant Gaussian points and those with minimal contributions to scene construction. Additionally, during the Gaussian parameter compression phase, we employ a combination of teacher–student models and vector quantization to compress the spherical harmonic coefficients. Extensive experimental results demonstrate that our approach reduces the storage requirements of original 3D Gaussian models by over 30 times, with only a minor degradation in rendering quality.
ISSN:2076-3417