Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss

A Bayes estimator for a mean parameter of an exponential distribution is calculated using Stein’s loss, which equally penalizes gross overestimation and underestimation. A corresponding Posterior Expected Stein’s Loss (PESL) is also determined. Additionally, a Bayes estimator for a mean parameter is...

Full description

Saved in:
Bibliographic Details
Main Authors: Zheng Li, Ying-Ying Zhang, Ya-Guang Shi
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1658
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850257878971056128
author Zheng Li
Ying-Ying Zhang
Ya-Guang Shi
author_facet Zheng Li
Ying-Ying Zhang
Ya-Guang Shi
author_sort Zheng Li
collection DOAJ
description A Bayes estimator for a mean parameter of an exponential distribution is calculated using Stein’s loss, which equally penalizes gross overestimation and underestimation. A corresponding Posterior Expected Stein’s Loss (PESL) is also determined. Additionally, a Bayes estimator for a mean parameter is obtained under a squared error loss along with its corresponding PESL. Furthermore, two methods are used to derive empirical Bayes estimators for the mean parameter of the exponential distribution with an inverse gamma prior. Numerical simulations are conducted to illustrate five aspects. Finally, theoretical studies are illustrated using Static Fatigue 90% Stress Level data.
format Article
id doaj-art-0c68ddb07f624f6a9032cd5d4d9eb8ef
institution OA Journals
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-0c68ddb07f624f6a9032cd5d4d9eb8ef2025-08-20T01:56:19ZengMDPI AGMathematics2227-73902025-05-011310165810.3390/math13101658Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s LossZheng Li0Ying-Ying Zhang1Ya-Guang Shi2Department of Statistics and Actuarial Science, College of Mathematics and Statistics, Chongqing University, Chongqing 401331, ChinaYunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming 650500, ChinaDepartment of Statistics and Actuarial Science, College of Mathematics and Statistics, Chongqing University, Chongqing 401331, ChinaA Bayes estimator for a mean parameter of an exponential distribution is calculated using Stein’s loss, which equally penalizes gross overestimation and underestimation. A corresponding Posterior Expected Stein’s Loss (PESL) is also determined. Additionally, a Bayes estimator for a mean parameter is obtained under a squared error loss along with its corresponding PESL. Furthermore, two methods are used to derive empirical Bayes estimators for the mean parameter of the exponential distribution with an inverse gamma prior. Numerical simulations are conducted to illustrate five aspects. Finally, theoretical studies are illustrated using Static Fatigue 90% Stress Level data.https://www.mdpi.com/2227-7390/13/10/1658empirical Bayes estimatorsexponential-inverse gamma modelmethod of maximum likelihood estimation (MLE)method of momentsStein’s loss
spellingShingle Zheng Li
Ying-Ying Zhang
Ya-Guang Shi
Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss
Mathematics
empirical Bayes estimators
exponential-inverse gamma model
method of maximum likelihood estimation (MLE)
method of moments
Stein’s loss
title Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss
title_full Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss
title_fullStr Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss
title_full_unstemmed Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss
title_short Empirical Bayes Estimators for Mean Parameter of Exponential Distribution with Conjugate Inverse Gamma Prior Under Stein’s Loss
title_sort empirical bayes estimators for mean parameter of exponential distribution with conjugate inverse gamma prior under stein s loss
topic empirical Bayes estimators
exponential-inverse gamma model
method of maximum likelihood estimation (MLE)
method of moments
Stein’s loss
url https://www.mdpi.com/2227-7390/13/10/1658
work_keys_str_mv AT zhengli empiricalbayesestimatorsformeanparameterofexponentialdistributionwithconjugateinversegammapriorundersteinsloss
AT yingyingzhang empiricalbayesestimatorsformeanparameterofexponentialdistributionwithconjugateinversegammapriorundersteinsloss
AT yaguangshi empiricalbayesestimatorsformeanparameterofexponentialdistributionwithconjugateinversegammapriorundersteinsloss