Prediksi Mahasiswa Drop-Out Di Universitas XYZ

Akreditasi dan reputasi merupakan faktor krusial bagi setiap perguruan tinggi, termasuk Universitas XYZ. Salah satu hal yang dapat memengaruhi akreditasi adalah jumlah mahasiswa yang mengalami drop-out (DO). Untuk mencegah penurunan akreditasi dan reputasi akibat masalah tersebut, penelitian ini be...

Full description

Saved in:
Bibliographic Details
Main Authors: Tubagus Ahmad Marzuqi, Evelline Kristiani, Marcel
Format: Article
Language:Indonesian
Published: University of Brawijaya 2024-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/8689
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858600471166976
author Tubagus Ahmad Marzuqi
Evelline Kristiani
Marcel
author_facet Tubagus Ahmad Marzuqi
Evelline Kristiani
Marcel
author_sort Tubagus Ahmad Marzuqi
collection DOAJ
description Akreditasi dan reputasi merupakan faktor krusial bagi setiap perguruan tinggi, termasuk Universitas XYZ. Salah satu hal yang dapat memengaruhi akreditasi adalah jumlah mahasiswa yang mengalami drop-out (DO). Untuk mencegah penurunan akreditasi dan reputasi akibat masalah tersebut, penelitian ini berfokus pada pengembangan model prediksi mahasiswa DO. Algoritma Random Forest, Gradient Boosting, dan Decision Tree digunakan untuk mengevaluasi seberapa akurat model klasifikasi dalam memprediksi potensi mahasiswa DO berdasarkan data akademik. Sebelum membangun model, digunakan metode SMOTE untuk menangani masalah ketidakseimbangan data. Hasil penelitian menunjukkan bahwa model prediksi menggunakan algoritma Random Forest berhasil mencapai akurasi sebesar 99,67%. Algoritma Gradient Boosting menghasilkan akurasi 99,21%, sementara Decision Tree mencapai akurasi sebesar 98,67%. Selain mengukur akurasi model, penelitian ini juga mengidentifikasi faktor-faktor utama yang berkontribusi terhadap prediksi mahasiswa DO. Faktor-faktor tersebut meliputi adanya tunggakan pembayaran, IPK rata-rata di bawah 2, jumlah mata kuliah yang diulang lebih dari satu kali, dan kegagalan dalam melakukan KRS lebih dari dua kali. Penelitian ini diharapkan dapat memberikan kontribusi signifikan dalam bidang prediksi akademik, khususnya dalam upaya mengurangi tingkat mahasiswa drop-out (DO) di perguruan tinggi.   Abstract Accreditation and reputation are critical factors for higher education institutions, including XYZ University. One factor that can negatively impact accreditation is the number of students who drop out (DO). To prevent a decline in accreditation and reputation due to this issue, this study aims to develop a predictive model for student dropouts. The Random Forest, Gradient Boosting, and Decision Tree algorithms were utilized to evaluate the accuracy of classification models in predicting potential dropouts using academic baseline data. Prior to model building, the SMOTE method was applied to address the issue of imbalanced data. The results indicate that the predictive model using the Random Forest algorithm achieved an accuracy of 99.67%. The Gradient Boosting algorithm yielded an accuracy of 99.21%, while the Decision Tree algorithm achieved 98.67% accuracy. In addition to determining model accuracy, this study also identified key factors contributing to the prediction of student dropouts. These factors include outstanding payment history, a GPA below 2.0, repeating courses more than once, and failing to register for courses (KRS) more than twice. This research is expected to make a significant contribution to the field of academic prediction, particularly in efforts to reduce the dropout (DO) rate among university students.  
format Article
id doaj-art-0c68c27493ba49fca23f83a71ae97cf8
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2024-12-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-0c68c27493ba49fca23f83a71ae97cf82025-02-11T10:36:38ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792024-12-0111610.25126/jtiik.1168689Prediksi Mahasiswa Drop-Out Di Universitas XYZTubagus Ahmad Marzuqi0Evelline Kristiani1Marcel2Universitas Kristen Krida Wacana, Jakarta BaratUniversitas Kristen Krida Wacana, Jakarta BaratUniversitas Kristen Krida Wacana, Jakarta Barat Akreditasi dan reputasi merupakan faktor krusial bagi setiap perguruan tinggi, termasuk Universitas XYZ. Salah satu hal yang dapat memengaruhi akreditasi adalah jumlah mahasiswa yang mengalami drop-out (DO). Untuk mencegah penurunan akreditasi dan reputasi akibat masalah tersebut, penelitian ini berfokus pada pengembangan model prediksi mahasiswa DO. Algoritma Random Forest, Gradient Boosting, dan Decision Tree digunakan untuk mengevaluasi seberapa akurat model klasifikasi dalam memprediksi potensi mahasiswa DO berdasarkan data akademik. Sebelum membangun model, digunakan metode SMOTE untuk menangani masalah ketidakseimbangan data. Hasil penelitian menunjukkan bahwa model prediksi menggunakan algoritma Random Forest berhasil mencapai akurasi sebesar 99,67%. Algoritma Gradient Boosting menghasilkan akurasi 99,21%, sementara Decision Tree mencapai akurasi sebesar 98,67%. Selain mengukur akurasi model, penelitian ini juga mengidentifikasi faktor-faktor utama yang berkontribusi terhadap prediksi mahasiswa DO. Faktor-faktor tersebut meliputi adanya tunggakan pembayaran, IPK rata-rata di bawah 2, jumlah mata kuliah yang diulang lebih dari satu kali, dan kegagalan dalam melakukan KRS lebih dari dua kali. Penelitian ini diharapkan dapat memberikan kontribusi signifikan dalam bidang prediksi akademik, khususnya dalam upaya mengurangi tingkat mahasiswa drop-out (DO) di perguruan tinggi.   Abstract Accreditation and reputation are critical factors for higher education institutions, including XYZ University. One factor that can negatively impact accreditation is the number of students who drop out (DO). To prevent a decline in accreditation and reputation due to this issue, this study aims to develop a predictive model for student dropouts. The Random Forest, Gradient Boosting, and Decision Tree algorithms were utilized to evaluate the accuracy of classification models in predicting potential dropouts using academic baseline data. Prior to model building, the SMOTE method was applied to address the issue of imbalanced data. The results indicate that the predictive model using the Random Forest algorithm achieved an accuracy of 99.67%. The Gradient Boosting algorithm yielded an accuracy of 99.21%, while the Decision Tree algorithm achieved 98.67% accuracy. In addition to determining model accuracy, this study also identified key factors contributing to the prediction of student dropouts. These factors include outstanding payment history, a GPA below 2.0, repeating courses more than once, and failing to register for courses (KRS) more than twice. This research is expected to make a significant contribution to the field of academic prediction, particularly in efforts to reduce the dropout (DO) rate among university students.   https://jtiik.ub.ac.id/index.php/jtiik/article/view/8689
spellingShingle Tubagus Ahmad Marzuqi
Evelline Kristiani
Marcel
Prediksi Mahasiswa Drop-Out Di Universitas XYZ
Jurnal Teknologi Informasi dan Ilmu Komputer
title Prediksi Mahasiswa Drop-Out Di Universitas XYZ
title_full Prediksi Mahasiswa Drop-Out Di Universitas XYZ
title_fullStr Prediksi Mahasiswa Drop-Out Di Universitas XYZ
title_full_unstemmed Prediksi Mahasiswa Drop-Out Di Universitas XYZ
title_short Prediksi Mahasiswa Drop-Out Di Universitas XYZ
title_sort prediksi mahasiswa drop out di universitas xyz
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/8689
work_keys_str_mv AT tubagusahmadmarzuqi prediksimahasiswadropoutdiuniversitasxyz
AT evellinekristiani prediksimahasiswadropoutdiuniversitasxyz
AT marcel prediksimahasiswadropoutdiuniversitasxyz