Polynomial Chaos Expansion Approach to Interest Rate Models

The Polynomial Chaos Expansion (PCE) technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been devel...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Di Persio, Gregorio Pellegrini, Michele Bonollo
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Probability and Statistics
Online Access:http://dx.doi.org/10.1155/2015/369053
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Polynomial Chaos Expansion (PCE) technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been developed as a mathematically rigorous Uncertainty Quantification (UQ) method which aims at providing reliable numerical estimates for some uncertain physical quantities defining the dynamic of certain engineering models and their related simulations. In the present paper, we use the PCE approach in order to analyze some equity and interest rate models. In particular, we take into consideration those models which are based on, for example, the Geometric Brownian Motion, the Vasicek model, and the CIR model. We present theoretical as well as related concrete numerical approximation results considering, without loss of generality, the one-dimensional case. We also provide both an efficiency study and an accuracy study of our approach by comparing its outputs with the ones obtained adopting the Monte Carlo approach, both in its standard and its enhanced version.
ISSN:1687-952X
1687-9538