Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
Abstract The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing inter...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2025-01-01
|
Series: | Advanced Science |
Subjects: | |
Online Access: | https://doi.org/10.1002/advs.202412347 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841553126832734208 |
---|---|
author | Cinzia Di Franco Eleonora Macchia Michele Catacchio Mariapia Caputo Cecilia Scandurra Lucia Sarcina Paolo Bollella Angelo Tricase Massimo Innocenti Riccardo Funari Matteo Piscitelli Gaetano Scamarcio Luisa Torsi |
author_facet | Cinzia Di Franco Eleonora Macchia Michele Catacchio Mariapia Caputo Cecilia Scandurra Lucia Sarcina Paolo Bollella Angelo Tricase Massimo Innocenti Riccardo Funari Matteo Piscitelli Gaetano Scamarcio Luisa Torsi |
author_sort | Cinzia Di Franco |
collection | DOAJ |
description | Abstract The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric‐field (EF)‐cycling of anti‐Immunoglobulin M (anti‐IgM) biolayers physisorbed on Au. The impact of EF‐cycling on the dielectric, optical, and mechanical properties of anti‐IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF‐cycling. Notably, EF‐cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices. |
format | Article |
id | doaj-art-0c3dfb0315124d689b1c615f2f9572fb |
institution | Kabale University |
issn | 2198-3844 |
language | English |
publishDate | 2025-01-01 |
publisher | Wiley |
record_format | Article |
series | Advanced Science |
spelling | doaj-art-0c3dfb0315124d689b1c615f2f9572fb2025-01-09T11:44:46ZengWileyAdvanced Science2198-38442025-01-01121n/an/a10.1002/advs.202412347Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization DispersionCinzia Di Franco0Eleonora Macchia1Michele Catacchio2Mariapia Caputo3Cecilia Scandurra4Lucia Sarcina5Paolo Bollella6Angelo Tricase7Massimo Innocenti8Riccardo Funari9Matteo Piscitelli10Gaetano Scamarcio11Luisa Torsi12Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari 70126 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Chimica Università degli Studi di Firenze INSTM Consortium ℅ Dip. Chimica Via della Lastruccia 3–13 Sesto Fiorentino I‐50019 Florence ItalyDipartimento Interateneo di Fisica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyInstitituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari 70126 ItalyDipartimento Interateneo di Fisica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyAbstract The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric‐field (EF)‐cycling of anti‐Immunoglobulin M (anti‐IgM) biolayers physisorbed on Au. The impact of EF‐cycling on the dielectric, optical, and mechanical properties of anti‐IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF‐cycling. Notably, EF‐cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.https://doi.org/10.1002/advs.202412347antibody‐capturing‐layersanti‐IgMelectric‐field‐cyclingelectrolyte‐gated‐organic field‐effect‐transistors(EGOFETs)Kelvin‐Probe‐Force‐Microscopy (KPFM)protein‐physisorption |
spellingShingle | Cinzia Di Franco Eleonora Macchia Michele Catacchio Mariapia Caputo Cecilia Scandurra Lucia Sarcina Paolo Bollella Angelo Tricase Massimo Innocenti Riccardo Funari Matteo Piscitelli Gaetano Scamarcio Luisa Torsi Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion Advanced Science antibody‐capturing‐layers anti‐IgM electric‐field‐cycling electrolyte‐gated‐organic field‐effect‐transistors(EGOFETs) Kelvin‐Probe‐Force‐Microscopy (KPFM) protein‐physisorption |
title | Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion |
title_full | Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion |
title_fullStr | Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion |
title_full_unstemmed | Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion |
title_short | Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion |
title_sort | electric field cycling of physisorbed antibodies reduces biolayer polarization dispersion |
topic | antibody‐capturing‐layers anti‐IgM electric‐field‐cycling electrolyte‐gated‐organic field‐effect‐transistors(EGOFETs) Kelvin‐Probe‐Force‐Microscopy (KPFM) protein‐physisorption |
url | https://doi.org/10.1002/advs.202412347 |
work_keys_str_mv | AT cinziadifranco electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT eleonoramacchia electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT michelecatacchio electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT mariapiacaputo electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT ceciliascandurra electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT luciasarcina electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT paolobollella electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT angelotricase electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT massimoinnocenti electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT riccardofunari electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT matteopiscitelli electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT gaetanoscamarcio electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion AT luisatorsi electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion |