Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion

Abstract The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing inter...

Full description

Saved in:
Bibliographic Details
Main Authors: Cinzia Di Franco, Eleonora Macchia, Michele Catacchio, Mariapia Caputo, Cecilia Scandurra, Lucia Sarcina, Paolo Bollella, Angelo Tricase, Massimo Innocenti, Riccardo Funari, Matteo Piscitelli, Gaetano Scamarcio, Luisa Torsi
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202412347
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553126832734208
author Cinzia Di Franco
Eleonora Macchia
Michele Catacchio
Mariapia Caputo
Cecilia Scandurra
Lucia Sarcina
Paolo Bollella
Angelo Tricase
Massimo Innocenti
Riccardo Funari
Matteo Piscitelli
Gaetano Scamarcio
Luisa Torsi
author_facet Cinzia Di Franco
Eleonora Macchia
Michele Catacchio
Mariapia Caputo
Cecilia Scandurra
Lucia Sarcina
Paolo Bollella
Angelo Tricase
Massimo Innocenti
Riccardo Funari
Matteo Piscitelli
Gaetano Scamarcio
Luisa Torsi
author_sort Cinzia Di Franco
collection DOAJ
description Abstract The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric‐field (EF)‐cycling of anti‐Immunoglobulin M (anti‐IgM) biolayers physisorbed on Au. The impact of EF‐cycling on the dielectric, optical, and mechanical properties of anti‐IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF‐cycling. Notably, EF‐cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.
format Article
id doaj-art-0c3dfb0315124d689b1c615f2f9572fb
institution Kabale University
issn 2198-3844
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-0c3dfb0315124d689b1c615f2f9572fb2025-01-09T11:44:46ZengWileyAdvanced Science2198-38442025-01-01121n/an/a10.1002/advs.202412347Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization DispersionCinzia Di Franco0Eleonora Macchia1Michele Catacchio2Mariapia Caputo3Cecilia Scandurra4Lucia Sarcina5Paolo Bollella6Angelo Tricase7Massimo Innocenti8Riccardo Funari9Matteo Piscitelli10Gaetano Scamarcio11Luisa Torsi12Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari 70126 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Bari 70125 ItalyDipartimento di Chimica Università degli Studi di Firenze INSTM Consortium ℅ Dip. Chimica Via della Lastruccia 3–13 Sesto Fiorentino I‐50019 Florence ItalyDipartimento Interateneo di Fisica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyInstitituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari 70126 ItalyDipartimento Interateneo di Fisica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Chimica and Centre for Colloid and Surface Science Università degli Studi di Bari Aldo Moro Bari 20125 ItalyAbstract The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric‐field (EF)‐cycling of anti‐Immunoglobulin M (anti‐IgM) biolayers physisorbed on Au. The impact of EF‐cycling on the dielectric, optical, and mechanical properties of anti‐IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF‐cycling. Notably, EF‐cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.https://doi.org/10.1002/advs.202412347antibody‐capturing‐layersanti‐IgMelectric‐field‐cyclingelectrolyte‐gated‐organic field‐effect‐transistors(EGOFETs)Kelvin‐Probe‐Force‐Microscopy (KPFM)protein‐physisorption
spellingShingle Cinzia Di Franco
Eleonora Macchia
Michele Catacchio
Mariapia Caputo
Cecilia Scandurra
Lucia Sarcina
Paolo Bollella
Angelo Tricase
Massimo Innocenti
Riccardo Funari
Matteo Piscitelli
Gaetano Scamarcio
Luisa Torsi
Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
Advanced Science
antibody‐capturing‐layers
anti‐IgM
electric‐field‐cycling
electrolyte‐gated‐organic field‐effect‐transistors(EGOFETs)
Kelvin‐Probe‐Force‐Microscopy (KPFM)
protein‐physisorption
title Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
title_full Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
title_fullStr Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
title_full_unstemmed Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
title_short Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion
title_sort electric field cycling of physisorbed antibodies reduces biolayer polarization dispersion
topic antibody‐capturing‐layers
anti‐IgM
electric‐field‐cycling
electrolyte‐gated‐organic field‐effect‐transistors(EGOFETs)
Kelvin‐Probe‐Force‐Microscopy (KPFM)
protein‐physisorption
url https://doi.org/10.1002/advs.202412347
work_keys_str_mv AT cinziadifranco electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT eleonoramacchia electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT michelecatacchio electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT mariapiacaputo electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT ceciliascandurra electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT luciasarcina electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT paolobollella electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT angelotricase electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT massimoinnocenti electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT riccardofunari electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT matteopiscitelli electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT gaetanoscamarcio electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion
AT luisatorsi electricfieldcyclingofphysisorbedantibodiesreducesbiolayerpolarizationdispersion