Regularity of n-P-V-Rings and n-P-V’-Rings

The regularity of the n-P-V-rings and n-P-V’-rings is systematically investigated in this paper. Employing the notions of quasi-ideals, weakly left (or right) ideals, and generalized weak ideals, we focus on investigating the strong <inline-formula><math xmlns="http://www.w3.org/1998/M...

Full description

Saved in:
Bibliographic Details
Main Authors: Liuwen Li, Wenlin Zou, Ying Li
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/12/863
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850041718788849664
author Liuwen Li
Wenlin Zou
Ying Li
author_facet Liuwen Li
Wenlin Zou
Ying Li
author_sort Liuwen Li
collection DOAJ
description The regularity of the n-P-V-rings and n-P-V’-rings is systematically investigated in this paper. Employing the notions of quasi-ideals, weakly left (or right) ideals, and generalized weak ideals, we focus on investigating the strong <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regularity and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regularity of the n-P-V-rings and the n-P-V’-rings. Subsequently, we demonstrate our results as follows: (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regular if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is a left n-P-V-ring where all its maximal left ideals are either quasi-ideals, weakly right ideals, or generalized weak ideals. (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regular iff <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is an abelian left (right) n-P-V’-ring where all its maximal essential left (right) ideals are either quasi-ideals, weakly right (left) ideals, or generalized weak ideals. (3) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is reduced left weakly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regular if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is an idempotent reflexive semi-abelian left n-P-V’-ring where all its maximal essential left ideals are either quasi-ideals, weakly right ideals, or generalized weak ideals.
format Article
id doaj-art-0c1f1adf4d5e47d68489aed7cb2b250b
institution DOAJ
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-0c1f1adf4d5e47d68489aed7cb2b250b2025-08-20T02:55:42ZengMDPI AGAxioms2075-16802024-12-01131286310.3390/axioms13120863Regularity of n-P-V-Rings and n-P-V’-RingsLiuwen Li0Wenlin Zou1Ying Li2School of Science, Jinling Institute of Technology, Nanjing 211169, ChinaSchool of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, ChinaSchool of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, ChinaThe regularity of the n-P-V-rings and n-P-V’-rings is systematically investigated in this paper. Employing the notions of quasi-ideals, weakly left (or right) ideals, and generalized weak ideals, we focus on investigating the strong <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regularity and weak <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regularity of the n-P-V-rings and the n-P-V’-rings. Subsequently, we demonstrate our results as follows: (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regular if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is a left n-P-V-ring where all its maximal left ideals are either quasi-ideals, weakly right ideals, or generalized weak ideals. (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is strongly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regular iff <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is an abelian left (right) n-P-V’-ring where all its maximal essential left (right) ideals are either quasi-ideals, weakly right (left) ideals, or generalized weak ideals. (3) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is reduced left weakly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>π</mi></mrow></semantics></math></inline-formula>-regular if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula> is an idempotent reflexive semi-abelian left n-P-V’-ring where all its maximal essential left ideals are either quasi-ideals, weakly right ideals, or generalized weak ideals.https://www.mdpi.com/2075-1680/13/12/863n-P-V-ringsn-P-V’-ringsleft weakly <i>π</i>-regularstrongly <i>π</i>-regularn-P-injective modules
spellingShingle Liuwen Li
Wenlin Zou
Ying Li
Regularity of n-P-V-Rings and n-P-V’-Rings
Axioms
n-P-V-rings
n-P-V’-rings
left weakly <i>π</i>-regular
strongly <i>π</i>-regular
n-P-injective modules
title Regularity of n-P-V-Rings and n-P-V’-Rings
title_full Regularity of n-P-V-Rings and n-P-V’-Rings
title_fullStr Regularity of n-P-V-Rings and n-P-V’-Rings
title_full_unstemmed Regularity of n-P-V-Rings and n-P-V’-Rings
title_short Regularity of n-P-V-Rings and n-P-V’-Rings
title_sort regularity of n p v rings and n p v rings
topic n-P-V-rings
n-P-V’-rings
left weakly <i>π</i>-regular
strongly <i>π</i>-regular
n-P-injective modules
url https://www.mdpi.com/2075-1680/13/12/863
work_keys_str_mv AT liuwenli regularityofnpvringsandnpvrings
AT wenlinzou regularityofnpvringsandnpvrings
AT yingli regularityofnpvringsandnpvrings