A Semi-Analytical Method for the Identification of DC-Decay Parameters at an Arbitrary Rotor Position in Large Synchronous Machines

Experimental approaches for the identification of dynamic parameters in synchronous machines mainly include two methods, a three-phase sudden short-circuit (TPSSC) test and a standstill frequency response (SSFR) test. However, the former has significant safety risks, while the latter has a complex i...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenming Lai, Haoyu Kang, Demin Liu, Zhichao Wang, Yong Yang, Jin Wang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/279
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental approaches for the identification of dynamic parameters in synchronous machines mainly include two methods, a three-phase sudden short-circuit (TPSSC) test and a standstill frequency response (SSFR) test. However, the former has significant safety risks, while the latter has a complex implementation process, resulting in insufficient adaptability to large-scale units. To overcome the above obstacles, this paper proposes an improved DC-decay test method that can be performed at an arbitrary rotor position so that the rotor pre-positioning process in the conventional DC-decay test can be neglected. Meanwhile, combining the transient analysis theory and particle swarm optimization algorithm, a semi-analytical parameter identification method is proposed. Finally, the proposed method is applied using a 172 MVA large synchronous machine. Compared to the results obtained by the TPSSC test using the Prony algorithm and other conventional type tests, the error of the parameter calculation results obtained with the conventional method reached a maximum of 16.6%, while that of the proposed method was merely 8.6%, and the experimental period could be shortened from 5 days to half a day.
ISSN:1996-1073