The Consensus of Different Fractional-Order Chaotic Multiagent Systems Using Adaptive Protocols
This paper is concerned with the adaptive consensus problem of incommensurate chaotic fractional order multiagent systems. Firstly, we introduce fractional-order derivative in the sense of Caputo and the classical stability theorem of linear fractional order systems; also, algebraic graph theory and...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2022/5129072 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper is concerned with the adaptive consensus problem of incommensurate chaotic fractional order multiagent systems. Firstly, we introduce fractional-order derivative in the sense of Caputo and the classical stability theorem of linear fractional order systems; also, algebraic graph theory and sufficient conditions are presented to ensure the consensus for fractional multiagent systems. Furthermore, adaptive protocols of each agent using local information are designed and a detailed analysis of the leader-following consensus is presented. Finally, some numerical simulation examples are also given to show the effectiveness of the proposed results. |
|---|---|
| ISSN: | 2314-4785 |