Intelligent Machine Learning Based Internet of Things (IoT) Resource Allocation
The Internet of Things (IoT) and machine learning provide insights that would otherwise be hidden in data for quicker, automated responses and improved decision-making. By ingesting images, videos, and audio, machine learning for the Internet of Things can be used to predict future trends, identify...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2023-12-01
|
| Series: | Engineering Proceedings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4591/59/1/73 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Internet of Things (IoT) and machine learning provide insights that would otherwise be hidden in data for quicker, automated responses and improved decision-making. By ingesting images, videos, and audio, machine learning for the Internet of Things can be used to predict future trends, identify anomalies, and enhance intelligence. The IoT organic framework comprises millions of sharp objects, and to form these sharp objects to communicate and work suitably, asset tasks are necessary. Protection of the quality of service (QoS) is one of the diverse reasons that resource tasks ought to be performed. These techniques aid accomplices in choosing tasks resulting in preeminent regard and impact. Prebuilt software-as-a-service (SaaS) applications, called IoT Cleverly applications, can use dashboards to analyze and display data from IoT sensors. If one of the devices is hacked, the security of every other device in this chain is compromised. This can possibly result in second thoughts about a security plans. A user can see key execution indicators and measure the time between data entries by using IoT dashboards and alarms. Calculations based on machine learning can find peculiarities in equipment, notify customers, and even start robotized repairs or proactive countermeasures. AI and Profound Learning resemble managing a real workplace issue such as marking by combining a few innovations that enable constant naming. |
|---|---|
| ISSN: | 2673-4591 |