Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

Pure and M-doped (M = Pt, Fe, and Zn) SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based...

Full description

Saved in:
Bibliographic Details
Main Authors: Weigen Chen, Qu Zhou, Shudi Peng
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2013/578460
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pure and M-doped (M = Pt, Fe, and Zn) SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.
ISSN:1687-8434
1687-8442