Solving Flexible Job-Shop Scheduling Problems Based on Quantum Computing

Flexible job-shop scheduling problems (FJSPs) represent one of the most complex combinatorial optimization challenges. Modern production systems and control processes demand rapid decision-making in scheduling. To address this challenge, we propose a quantum computing approach for solving FJSPs. We...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaihan Fu, Jianjun Liu, Miao Chen, Huiying Zhang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/2/189
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flexible job-shop scheduling problems (FJSPs) represent one of the most complex combinatorial optimization challenges. Modern production systems and control processes demand rapid decision-making in scheduling. To address this challenge, we propose a quantum computing approach for solving FJSPs. We propose a quadratic unconstrained binary optimization (QUBO) model to minimize the makespan of FJSPs, with the scheduling scheme encoded in the ground state of the Hamiltonian operator. The model is solved using a coherent Ising machine (CIM). Numerical experiments are conducted to evaluate and validate the performance and effectiveness of the CIM. The results demonstrate that quantum computing holds significant potential for solving FJSPs more efficiently than traditional computational methods.
ISSN:1099-4300