A multimodal educational robots driven via dynamic attention

IntroductionWith the development of artificial intelligence and robotics technology, the application of educational robots in teaching is becoming increasingly popular. However, effectively evaluating and optimizing multimodal educational robots remains a challenge.MethodsThis study introduces Res-A...

Full description

Saved in:
Bibliographic Details
Main Author: An Jianliang
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-10-01
Series:Frontiers in Neurorobotics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnbot.2024.1453061/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:IntroductionWith the development of artificial intelligence and robotics technology, the application of educational robots in teaching is becoming increasingly popular. However, effectively evaluating and optimizing multimodal educational robots remains a challenge.MethodsThis study introduces Res-ALBEF, a multimodal educational robot framework driven by dynamic attention. Res-ALBEF enhances the ALBEF (Align Before Fuse) method by incorporating residual connections to align visual and textual data more effectively before fusion. In addition, the model integrates a VGG19-based convolutional network for image feature extraction and utilizes a dynamic attention mechanism to dynamically focus on relevant parts of multimodal inputs. Our model was trained using a diverse dataset consisting of 50,000 multimodal educational instances, covering a variety of subjects and instructional content.Results and discussionThe evaluation on an independent validation set of 10,000 samples demonstrated significant performance improvements: the model achieved an overall accuracy of 97.38% in educational content recognition. These results highlight the model's ability to improve alignment and fusion of multimodal information, making it a robust solution for multimodal educational robots.
ISSN:1662-5218