Efficient Prediction of Superlattice and Anomalous Miniband Topology from Quantum Geometry
Two-dimensional materials subject to long-wavelength modulations have emerged as novel platforms to study topological and correlated quantum phases. In this article, we develop a versatile and computationally inexpensive method to predict the topological properties of materials subjected to a superl...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2025-01-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.15.011004 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional materials subject to long-wavelength modulations have emerged as novel platforms to study topological and correlated quantum phases. In this article, we develop a versatile and computationally inexpensive method to predict the topological properties of materials subjected to a superlattice potential by combining degenerate perturbation theory with the method of symmetry indicators. In the absence of electronic interactions, our analysis provides a systematic rule to find the Chern number of the superlattice-induced miniband starting from the harmonics of the applied potential and a few material-specific coefficients. Our method also applies to anomalous (interaction-generated) bands, for which we derive an efficient algorithm to determine all Chern numbers compatible with a self-consistent solution to the Hartree-Fock equations. Our approach gives a microscopic understanding of the quantum anomalous Hall insulators recently observed in rhombohedral graphene multilayers. |
---|---|
ISSN: | 2160-3308 |