Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces
Let nonempty subsets <i>E</i> and <i>F</i> of a Banach space <i>X</i> be given, along with a mapping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant=&...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/6/400 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849433065123741696 |
|---|---|
| author | Moosa Gabeleh Maggie Aphane |
| author_facet | Moosa Gabeleh Maggie Aphane |
| author_sort | Moosa Gabeleh |
| collection | DOAJ |
| description | Let nonempty subsets <i>E</i> and <i>F</i> of a Banach space <i>X</i> be given, along with a mapping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>:</mo><mi>E</mi><mo>∪</mo><mi>F</mi><mo>→</mo><mi>E</mi><mo>∪</mo><mi>F</mi></mrow></semantics></math></inline-formula> defined as noncyclic when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>⊆</mo><mi>E</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>F</mi></mrow></semantics></math></inline-formula>. In this case, an optimal pair of fixed points is defined as a point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>∈</mo><mi>E</mi><mo>×</mo><mi>F</mi></mrow></semantics></math></inline-formula> where <i>p</i> and <i>q</i> are fixed points of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> that estimate the distance between <i>E</i> and <i>F</i>. This article explores an extended version of Göhde’s fixed point problem to identify optimal fixed point pairs for noncyclic relatively nonexpansive maps in strictly convex Banach spaces, while introducing new classes of noncyclic Kannan contractions, noncyclic relatively Kannan nonexpansive contractions using the proximal projection mapping defined on union of proximal pairs, and proving additional existence results with supporting examples. |
| format | Article |
| id | doaj-art-0b46c16228794d0891eb0b1a6a2b0a69 |
| institution | Kabale University |
| issn | 2075-1680 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Axioms |
| spelling | doaj-art-0b46c16228794d0891eb0b1a6a2b0a692025-08-20T03:27:11ZengMDPI AGAxioms2075-16802025-05-0114640010.3390/axioms14060400Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach SpacesMoosa Gabeleh0Maggie Aphane1Department of Mathematics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd 6919969737, IranDepartment of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Pretoria 0204, South AfricaLet nonempty subsets <i>E</i> and <i>F</i> of a Banach space <i>X</i> be given, along with a mapping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>:</mo><mi>E</mi><mo>∪</mo><mi>F</mi><mo>→</mo><mi>E</mi><mo>∪</mo><mi>F</mi></mrow></semantics></math></inline-formula> defined as noncyclic when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>⊆</mo><mi>E</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>F</mi></mrow></semantics></math></inline-formula>. In this case, an optimal pair of fixed points is defined as a point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>∈</mo><mi>E</mi><mo>×</mo><mi>F</mi></mrow></semantics></math></inline-formula> where <i>p</i> and <i>q</i> are fixed points of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> that estimate the distance between <i>E</i> and <i>F</i>. This article explores an extended version of Göhde’s fixed point problem to identify optimal fixed point pairs for noncyclic relatively nonexpansive maps in strictly convex Banach spaces, while introducing new classes of noncyclic Kannan contractions, noncyclic relatively Kannan nonexpansive contractions using the proximal projection mapping defined on union of proximal pairs, and proving additional existence results with supporting examples.https://www.mdpi.com/2075-1680/14/6/400optimal pair of fixed pointsstrictly convex Banach spacenoncyclic relatively nonexpansiveproximal projection map |
| spellingShingle | Moosa Gabeleh Maggie Aphane Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces Axioms optimal pair of fixed points strictly convex Banach space noncyclic relatively nonexpansive proximal projection map |
| title | Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces |
| title_full | Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces |
| title_fullStr | Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces |
| title_full_unstemmed | Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces |
| title_short | Extensions of Göhde and Kannan Fixed Point Theorems in Strictly Convex Banach Spaces |
| title_sort | extensions of gohde and kannan fixed point theorems in strictly convex banach spaces |
| topic | optimal pair of fixed points strictly convex Banach space noncyclic relatively nonexpansive proximal projection map |
| url | https://www.mdpi.com/2075-1680/14/6/400 |
| work_keys_str_mv | AT moosagabeleh extensionsofgohdeandkannanfixedpointtheoremsinstrictlyconvexbanachspaces AT maggieaphane extensionsofgohdeandkannanfixedpointtheoremsinstrictlyconvexbanachspaces |