Optimizing Flight Delay Predictions with Scorecard Systems
Flight delays represent a significant challenge for airlines, airports, and passengers, impacting operational costs and customer satisfaction. Traditional prediction methods often rely on complex statistical analysis and mathematical models that may not be easily implementable. This study proposes s...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/11/5918 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Flight delays represent a significant challenge for airlines, airports, and passengers, impacting operational costs and customer satisfaction. Traditional prediction methods often rely on complex statistical analysis and mathematical models that may not be easily implementable. This study proposes scorecards as an innovative and simplified approach to forecast flight delays. Historical flight data from the United States were used, incorporating variables such as departure and arrival times, flight routes, aircraft types, and other factors related to delay. Exploratory data analysis identified key variables influencing delays, and scorecards were constructed by assigning weights, normalizing, and scaling variables to improve interpretability. The model was validated using test datasets, and predictive performance was evaluated by comparing forecast delays with actual results. The results indicate that scorecards provide accurate and interpretable predictions of flight delays. This method facilitates the identification of critical factors that contribute to delays and allows for an estimation of their likelihood and duration. Scorecards offer a practical tool for airlines and airport operators, potentially enhancing decision-making processes, reducing delay-related costs, and improving service quality. Future research should explore the integration of scorecards into operational systems and the inclusion of additional variables to increase model robustness and generalizability. |
|---|---|
| ISSN: | 2076-3417 |