IHML: Incremental Heuristic Meta-Learner

The landscape of machine learning constantly demands innovative approaches to enhance algorithms’ performance across diverse tasks. Meta-learning, known as “learning to learn” is a promising way to overcome these diversity challenges by blending multiple algorithms. This study introduces the IHML: I...

Full description

Saved in:
Bibliographic Details
Main Authors: Onur Karadeli, Kıymet Kaya, Şule Gündüz Öğüdücü
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Applied Artificial Intelligence
Online Access:https://www.tandfonline.com/doi/10.1080/08839514.2024.2434309
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The landscape of machine learning constantly demands innovative approaches to enhance algorithms’ performance across diverse tasks. Meta-learning, known as “learning to learn” is a promising way to overcome these diversity challenges by blending multiple algorithms. This study introduces the IHML: Incremental Heuristic Meta-Learner, a novel meta-learning algorithm for classification tasks. By leveraging a variety of base-learners with distinct learning dynamics, such as Gaussian, tree, and instance, IHML offers a comprehensive solution adaptable to different data characteristics. Moreover, the core contributions of IHML lie in its ability to tackle the optimal base-learner and feature sets determination mechanism with the help of Explainable Artificial Intelligence (XAI) and heuristic elbow methods. Existing work in this context utilizes XAI mostly in pre-processing the data or post-analysis of the results, however, IHML incorporates XAI into the learning process in an iterative manner and improves the prediction performance of the meta-learner. To observe the performance of the proposed IHML, we used five different datasets from astrophysics, physics, biology, e-commerce, and economics. The results show that the proposed model achieves more accuracy (in average % 10 and at most % 71 improvements) compared to the baseline machine learning models in the literature.
ISSN:0883-9514
1087-6545