Heteroclinic Cycles Imply Chaos and Are Structurally Stable
This paper is concerned with the chaos of discrete dynamical systems. A new concept of heteroclinic cycles connecting expanding periodic points is raised, and by a novel method, we prove an invariant subsystem is topologically conjugate to the one-side symbolic system. Thus, heteroclinic cycles impl...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2021/6647132 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper is concerned with the chaos of discrete dynamical systems. A new concept of heteroclinic cycles connecting expanding periodic points is raised, and by a novel method, we prove an invariant subsystem is topologically conjugate to the one-side symbolic system. Thus, heteroclinic cycles imply chaos in the sense of Devaney. In addition, if a continuous differential map h has heteroclinic cycles in ℝn, then g has heteroclinic cycles with h−gC1 being sufficiently small. The results demonstrate C1 structural stability of heteroclinic cycles. In the end, two examples are given to illustrate our theoretical results and applications. |
|---|---|
| ISSN: | 1026-0226 1607-887X |