Analytical and Experimental Vibration of Sandwich Beams Having Various Boundary Conditions
Generalized differential quadrature (GDQ) method is used to analyze the vibration of sandwich beams with different boundary conditions. The equations of motion of the sandwich beam are derived using higher-order sandwich panel theory (HSAPT). Seven partial differential equations of motions are obtai...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2018/3682370 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Generalized differential quadrature (GDQ) method is used to analyze the vibration of sandwich beams with different boundary conditions. The equations of motion of the sandwich beam are derived using higher-order sandwich panel theory (HSAPT). Seven partial differential equations of motions are obtained through the use of Hamilton’s principle. The GDQ method is utilized to solve the equations of motion. Experiments are conducted to validate the proposed theory. The results from the analytical model are also compared to those from the literature and finite element method (FEM). Parametric studies are conducted to investigate the effects of different parameters on the natural frequency and response of the sandwich beam under various boundary conditions. |
|---|---|
| ISSN: | 1070-9622 1875-9203 |