Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings

This paper extends the concept of the total graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Al Khabyah, Nazim, Ikram Ali
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/5/386
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850127514359300096
author Ali Al Khabyah
Nazim
Ikram Ali
author_facet Ali Al Khabyah
Nazim
Ikram Ali
author_sort Ali Al Khabyah
collection DOAJ
description This paper extends the concept of the total graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> associated with a commutative ring to the three-fold Cartesian product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>p</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. We present complete and self-contained proofs for a wide range of graph-theoretic properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, including connectivity, diameter, regularity conditions, clique and independence numbers, and exact criteria for Hamiltonicity and Eulericity. We also derive improved lower bounds for the genus and characterize the automorphism group in both general and symmetric cases. Each result is illustrated through concrete numerical examples for clarity. Beyond theoretical contributions, we discuss potential applications in cryptographic key-exchange systems, fault-tolerant network architectures, and algebraic code design. This work generalizes and deepens prior studies on two-factor total graphs, and establishes a foundational framework for future exploration of higher-dimensional total graphs over finite commutative rings.
format Article
id doaj-art-0a4f968f4e4440f19a183e225bbde4cc
institution OA Journals
issn 2075-1680
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-0a4f968f4e4440f19a183e225bbde4cc2025-08-20T02:33:39ZengMDPI AGAxioms2075-16802025-05-0114538610.3390/axioms14050386Exploring the Structural and Traversal Properties of Total Graphs over Finite RingsAli Al Khabyah0Nazim1Ikram Ali2Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaDepartment of Applied Sciences, Meerut Institute of Engineering and Technology (MIET), Meerut 250005, IndiaDepartment of Computer Science, School of Engineering & Technology, Shri Venkateshwara University, Gajraula, Amroha 244236, IndiaThis paper extends the concept of the total graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> associated with a commutative ring to the three-fold Cartesian product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>p</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. We present complete and self-contained proofs for a wide range of graph-theoretic properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, including connectivity, diameter, regularity conditions, clique and independence numbers, and exact criteria for Hamiltonicity and Eulericity. We also derive improved lower bounds for the genus and characterize the automorphism group in both general and symmetric cases. Each result is illustrated through concrete numerical examples for clarity. Beyond theoretical contributions, we discuss potential applications in cryptographic key-exchange systems, fault-tolerant network architectures, and algebraic code design. This work generalizes and deepens prior studies on two-factor total graphs, and establishes a foundational framework for future exploration of higher-dimensional total graphs over finite commutative rings.https://www.mdpi.com/2075-1680/14/5/386total graphfinite commutative ringsautomorphism groupgraph traversal properties
spellingShingle Ali Al Khabyah
Nazim
Ikram Ali
Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings
Axioms
total graph
finite commutative rings
automorphism group
graph traversal properties
title Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings
title_full Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings
title_fullStr Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings
title_full_unstemmed Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings
title_short Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings
title_sort exploring the structural and traversal properties of total graphs over finite rings
topic total graph
finite commutative rings
automorphism group
graph traversal properties
url https://www.mdpi.com/2075-1680/14/5/386
work_keys_str_mv AT alialkhabyah exploringthestructuralandtraversalpropertiesoftotalgraphsoverfiniterings
AT nazim exploringthestructuralandtraversalpropertiesoftotalgraphsoverfiniterings
AT ikramali exploringthestructuralandtraversalpropertiesoftotalgraphsoverfiniterings