Evaluation and Optimization of Prediction Models for Crop Yield in Plant Factory
This study focuses on enhancing crop yield prediction in plant factory environments through precise crop canopy image capture and background interference removal. This method achieves highly accurate recognition of the crop canopy projection area (CCPA), with a coefficient of determination (R<sup...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Plants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2223-7747/14/14/2140 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study focuses on enhancing crop yield prediction in plant factory environments through precise crop canopy image capture and background interference removal. This method achieves highly accurate recognition of the crop canopy projection area (CCPA), with a coefficient of determination (R<sup>2</sup>) of 0.98. A spatial resolution of 0.078 mm/pixel was derived by referencing a scale ruler and processing pixel counts, eliminating outliers in the data. Image post-processing focused on extracting the canopy boundary and calculating the crop canopy area. By incorporating crop yield data, a comparative analysis of 28 prediction models was performed, assessing performance metrics such as MSE, RMSE, MAE, MAPE, R<sup>2</sup>, prediction speed, training time, and model size. Among them, the Wide Neural Network model emerged as the most optimal. It demonstrated remarkable predictive accuracy with an R<sup>2</sup> of 0.95, RMSE of 27.15 g, and MAPE of 11.74%. Furthermore, the model achieved a high prediction speed of 60,234.9 observations per second, and its compact size of 7039 bytes makes it suitable for efficient, real-time deployment in practical applications. This model offers substantial support for managing crop growth, providing a solid foundation for refining cultivation processes and enhancing crop yields. |
|---|---|
| ISSN: | 2223-7747 |