Optimization of Vibration Reduction Ability of Ladder Tracks by FEM Coupled with ACO
Ladder track, which has drawn increased attention in scientific communities, is an effective method for reducing vibrations from underground railways. In order to optimize the vibration reduction ability of ladder track, a new method, that is, the finite element method (FEM) coupled with ant colony...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2015/484827 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Ladder track, which has drawn increased attention in scientific communities, is an effective method for reducing vibrations from underground railways. In order to optimize the vibration reduction ability of ladder track, a new method, that is, the finite element method (FEM) coupled with ant colony optimization (ACO), has been proposed in this paper. We describe how to build the FEM model verified by the vibration tests in the Track Vibration Abatement and Control Laboratory and how to couple the FEM with ACO. The density and elasticity modulus of the sleeper pad are optimized using this method. After optimization, the vibration acceleration level of the supporting platform in the 1–200 Hz range was reduced from 102.8 dB to 94.4 dB. The optimized density of the sleeper pad is 620 kg/m3, and the optimized elasticity modulus of the sleeper pad is 6.25 × 106 N/m2. |
|---|---|
| ISSN: | 1070-9622 1875-9203 |