Wavelet-Guided Multi-Scale ConvNeXt for Unsupervised Medical Image Registration
Medical image registration is essential in clinical practices such as surgical navigation and image-guided diagnosis. The Transformer architecture of TransMorph demonstrates better accuracy in non-rigid registration tasks. However, its weaker spatial locality priors necessitate large-scale training...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Bioengineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5354/12/4/406 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Medical image registration is essential in clinical practices such as surgical navigation and image-guided diagnosis. The Transformer architecture of TransMorph demonstrates better accuracy in non-rigid registration tasks. However, its weaker spatial locality priors necessitate large-scale training datasets and a heavy number of parameters, which conflict with the limited annotated data and real-time demands of clinical workflows. Moreover, traditional downsampling and upsampling always degrade high-frequency anatomical features such as tissue boundaries or small lesions. We proposed WaveMorph, a wavelet-guided multi-scale ConvNeXt method for unsupervised medical image registration. A novel multi-scale wavelet feature fusion downsampling module is proposed by integrating the ConvNeXt architecture with Haar wavelet lossless decomposition to extract and fuse features from eight frequency sub-images using multi-scale convolution kernels. Additionally, a lightweight dynamic upsampling module is introduced in the decoder to reconstruct fine-grained anatomical structures. WaveMorph integrates the inductive bias of CNNs with the advantages of Transformers, effectively mitigating topological distortions caused by spatial information loss while supporting real-time inference. In both atlas-to-patient (IXI) and inter-patient (OASIS) registration tasks, WaveMorph demonstrates state-of-the-art performance, achieving Dice scores of 0.779 ± 0.015 and 0.824 ± 0.021, respectively, and real-time inference (0.072 s/image), validating the effectiveness of our model in medical image registration. |
|---|---|
| ISSN: | 2306-5354 |