Wavelet-Guided Multi-Scale ConvNeXt for Unsupervised Medical Image Registration

Medical image registration is essential in clinical practices such as surgical navigation and image-guided diagnosis. The Transformer architecture of TransMorph demonstrates better accuracy in non-rigid registration tasks. However, its weaker spatial locality priors necessitate large-scale training...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuejun Zhang, Aobo Xu, Ganxin Ouyang, Zhengrong Xu, Shaofei Shen, Wenkang Chen, Mingxian Liang, Guiqi Zhang, Jiashun Wei, Xiangrong Zhou, Dongbo Wu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/4/406
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Medical image registration is essential in clinical practices such as surgical navigation and image-guided diagnosis. The Transformer architecture of TransMorph demonstrates better accuracy in non-rigid registration tasks. However, its weaker spatial locality priors necessitate large-scale training datasets and a heavy number of parameters, which conflict with the limited annotated data and real-time demands of clinical workflows. Moreover, traditional downsampling and upsampling always degrade high-frequency anatomical features such as tissue boundaries or small lesions. We proposed WaveMorph, a wavelet-guided multi-scale ConvNeXt method for unsupervised medical image registration. A novel multi-scale wavelet feature fusion downsampling module is proposed by integrating the ConvNeXt architecture with Haar wavelet lossless decomposition to extract and fuse features from eight frequency sub-images using multi-scale convolution kernels. Additionally, a lightweight dynamic upsampling module is introduced in the decoder to reconstruct fine-grained anatomical structures. WaveMorph integrates the inductive bias of CNNs with the advantages of Transformers, effectively mitigating topological distortions caused by spatial information loss while supporting real-time inference. In both atlas-to-patient (IXI) and inter-patient (OASIS) registration tasks, WaveMorph demonstrates state-of-the-art performance, achieving Dice scores of 0.779 ± 0.015 and 0.824 ± 0.021, respectively, and real-time inference (0.072 s/image), validating the effectiveness of our model in medical image registration.
ISSN:2306-5354