Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach

The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisf...

Full description

Saved in:
Bibliographic Details
Main Authors: Zahid Iqbal, Rafia Ilyas, Huah Yong Chan, Naveed Ahmed
Format: Article
Language:English
Published: University of Baghdad, College of Science for Women 2021-12-01
Series:مجلة بغداد للعلوم
Subjects:
Online Access:https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6674
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850055208184315904
author Zahid Iqbal
Rafia Ilyas
Huah Yong Chan
Naveed Ahmed
author_facet Zahid Iqbal
Rafia Ilyas
Huah Yong Chan
Naveed Ahmed
author_sort Zahid Iqbal
collection DOAJ
description The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized.
format Article
id doaj-art-09dac7efccb14fc2a4a345373314fa96
institution DOAJ
issn 2078-8665
2411-7986
language English
publishDate 2021-12-01
publisher University of Baghdad, College of Science for Women
record_format Article
series مجلة بغداد للعلوم
spelling doaj-art-09dac7efccb14fc2a4a345373314fa962025-08-20T02:52:02ZengUniversity of Baghdad, College of Science for Womenمجلة بغداد للعلوم2078-86652411-79862021-12-01184(Suppl.)10.21123/bsj.2021.18.4(Suppl.).1465Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approachZahid Iqbal0Rafia Ilyas1Huah Yong Chan2Naveed Ahmed3School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia. & Department of Computer Science, University of Gujrat, Gujrat, Pakistan. Department of Computer Science, University of Gujrat, Gujrat, Pakistan. School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, MalaysiaDepartment of Computer Science, University of Gujrat, GujratThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized.https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6674Auto Timetable, Hyper Heuristic, Particle Swarm Optimizer
spellingShingle Zahid Iqbal
Rafia Ilyas
Huah Yong Chan
Naveed Ahmed
Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
مجلة بغداد للعلوم
Auto Timetable, Hyper Heuristic, Particle Swarm Optimizer
title Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
title_full Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
title_fullStr Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
title_full_unstemmed Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
title_short Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
title_sort effective solution of university course timetabling using particle swarm optimizer based hyper heuristic approach
topic Auto Timetable, Hyper Heuristic, Particle Swarm Optimizer
url https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6674
work_keys_str_mv AT zahidiqbal effectivesolutionofuniversitycoursetimetablingusingparticleswarmoptimizerbasedhyperheuristicapproach
AT rafiailyas effectivesolutionofuniversitycoursetimetablingusingparticleswarmoptimizerbasedhyperheuristicapproach
AT huahyongchan effectivesolutionofuniversitycoursetimetablingusingparticleswarmoptimizerbasedhyperheuristicapproach
AT naveedahmed effectivesolutionofuniversitycoursetimetablingusingparticleswarmoptimizerbasedhyperheuristicapproach