Technoeconomic Feasibility of Wind and Solar Generation for Off-Grid Hyperscale Data Centres
As a global community our use of data is increasing exponentially with emerging technologies such as artificial intelligence (AI), leading to a vast increase in the energy demand for data centres worldwide. Delivering this increased energy demand is a global challenge, which the rapid growth of rene...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/2/382 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a global community our use of data is increasing exponentially with emerging technologies such as artificial intelligence (AI), leading to a vast increase in the energy demand for data centres worldwide. Delivering this increased energy demand is a global challenge, which the rapid growth of renewable generation deployment could solve. For many data centre giants such as Google, Amazon, and Microsoft this has been the solution to date via power purchase agreements (PPAs). However, insufficient investment in grid infrastructure globally has both renewable generation developers and data centre developers facing challenges to connect to the grid. This paper considers the costs and carbon emissions associated with stand-alone hybrid renewable and gas generation microgrids that could be deployed either before a grid connection is available, or to allow the data centre to operate entirely off-grid. WindPRO 4.0 software is used to find optimal configurations with wind and solar generation, backed up by battery storage and onsite gas generation. The results show that off-grid generation could provide lower cost and carbon emissions for each of Europe’s data centre hotspots in Frankfurt, London, Amsterdam, Paris, and Dublin. This paper compares each generation configuration to grid equivalent systems and an onsite gas-only generation solution. The results showed that each hybrid renewable generation configuration had a reduced levelized cost of energy (<i>LCOE</i>) and reduced CO<sub>2</sub>eq emissions compared to that of its grid and gas-only equivalent. Previous literature does not consider the economic implications caused by a mismatch between generation and consumption. Therefore, this paper introduces a new metric to evaluate and compare the economic performance of each microgrid, the levelized cost of energy utilised (<i>LCOE</i>u) which gives the levelized cost of energy for a given microgrid considering only the energy which is consumed by the data centre. The <i>LCOE</i>u across all sites was found to be between 70 and 102 GBP/MWh with emissions between 0.021 and 0.074 tCO<sub>2</sub>eq/MWh. |
---|---|
ISSN: | 1996-1073 |