Adaptive Track Association Method Based on Automatic Feature Extraction

The integration of radar and Automatic Dependent Surveillance–Broadcast (ADS-B) surveillance data is critical for increasing the accuracy of air traffic monitoring; however, effective track associations remain challenging due to inherent sensor discrepancies and computational constraints. To achieve...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaoyue Zhang, Guanting Dong, Chenghao Huang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/15/2403
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integration of radar and Automatic Dependent Surveillance–Broadcast (ADS-B) surveillance data is critical for increasing the accuracy of air traffic monitoring; however, effective track associations remain challenging due to inherent sensor discrepancies and computational constraints. To achieve accurate identification and association between radar tracks and ADS-B tracks, this study proposes an adaptive feature extraction method based on the longest common subsequence (LCSS) combined with classification theory to address the limitations inherent in traditional machine learning-based track association approaches. These limitations encompass challenges in acquiring training samples, extended training times, and limited model generalization performance. The proposed method employs LCSS to measure the similarity between two types of trajectories and categorizes tracks into three groups—definite associations, definite nonassociations, and fuzzy associations—using a similarity matrix and an adaptive sample classification model (adaptive classification model). Fuzzy mathematical techniques are subsequently applied to extract discriminative features from both definite association and nonassociation sets, followed by training a support vector machine (SVM) model. Finally, the SVM performs classification and association of trajectories in the fuzzy association group. The computational results show that, compared with conventional statistical methods, the proposed methodology achieves both superior precision and recall rates while maintaining computational efficiency threefold that of traditional machine learning algorithms.
ISSN:2227-7390