Development and validation of a NO<sub><i>x</i></sub><sup>+</sup> ratio method for the quantitative separation of inorganic and organic nitrate aerosol using a unit-mass-resolution time-of-flight aerosol chemical speciation monitor equipped with a capture vaporizer (CV-UMR-ToF-ACSM)

<p>Particulate nitrate is a major component of ambient aerosol around the world, present in inorganic form, mainly as ammonium nitrate, and also as organic nitrate. It is of increasing importance to monitor ambient particulate nitrate, a reservoir of urban nitrogen oxides that can be transport...

Full description

Saved in:
Bibliographic Details
Main Authors: F. R. Nursanto, D. A. Day, R. Meinen, R. Holzinger, H. Saathoff, J. Fu, J. Mulder, U. Dusek, J. L. Fry
Format: Article
Language:English
Published: Copernicus Publications 2025-07-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/18/3051/2025/amt-18-3051-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>Particulate nitrate is a major component of ambient aerosol around the world, present in inorganic form, mainly as ammonium nitrate, and also as organic nitrate. It is of increasing importance to monitor ambient particulate nitrate, a reservoir of urban nitrogen oxides that can be transported downwind and harm ecosystems. The unit-mass-resolution time-of-flight aerosol chemical speciation monitor equipped with capture vaporizer (CV-UMR-ToF-ACSM) is designed to quantitatively monitor ambient PM<span class="inline-formula"><sub>2.5</sub></span> composition. In this paper, we describe a method for separating the organic and ammonium nitrate components measured by CV-UMR-ToF-ACSM based on evaluating the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn><mo>+</mo></msubsup><mspace linebreak="nobreak" width="0.125em"/><mo>/</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">NO</mi><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="55pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="553175b34927ea0e1dd52e22771ba7ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-3051-2025-ie00004.svg" width="55pt" height="15pt" src="amt-18-3051-2025-ie00004.png"/></svg:svg></span></span> ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="028ac11a5d00255f5cd2bebfa53fb902"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-3051-2025-ie00005.svg" width="24pt" height="14pt" src="amt-18-3051-2025-ie00005.png"/></svg:svg></span></span> ratio). This method includes modifying the ACSM fragmentation table, time averaging, and data filtering. By using the measured <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2a6a55d4caf2332280d6029154572194"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-3051-2025-ie00006.svg" width="24pt" height="14pt" src="amt-18-3051-2025-ie00006.png"/></svg:svg></span></span> ratio of <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span> and a plausible range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eb65f99e471aaeebbcaa19a5428d6f6a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-3051-2025-ie00007.svg" width="24pt" height="14pt" src="amt-18-3051-2025-ie00007.png"/></svg:svg></span></span> ratio for organic nitrate aerosol, the measured particulate nitrate can be split into inorganic and organic fractions. Data pre-treatment filters concentrations of particulate nitrate below 0.6–2.0 <span class="inline-formula">µg m<sup>−3</sup></span>, depending on the time averaging. The method detection limit, when considering <span class="inline-formula">±10</span> % absolute uncertainty of organic nitrate fraction, is found to be 2 <span class="inline-formula">µg m<sup>−3</sup></span> (120 <span class="inline-formula">min</span> averaging) to 10 <span class="inline-formula">µg m<sup>−3</sup></span> (10 <span class="inline-formula">min</span> averaging) for total particulate nitrate concentration and 10 % (120 <span class="inline-formula">min</span>) to 20 % (10 <span class="inline-formula">min</span>) for organic nitrate fraction. We show that this method is able to distinguish periods with inorganic or organic nitrate as major components at a rural site in the Netherlands. A comparison to a high-resolution time-of-flight aerosol mass spectrometer equipped with a standard vaporizer (SV-HR-ToF-AMS) and positive matrix factorization (PMF) method shows similar response of increasing particulate organic nitrate fraction with uncertainties mainly from sensitivity to fragmentation table correction when obtaining the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="bf0393145799d670464806da7619ecf1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-3051-2025-ie00008.svg" width="24pt" height="15pt" src="amt-18-3051-2025-ie00008.png"/></svg:svg></span></span> signal. We propose that researchers use this <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mi>x</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9729d4d8d125869e8a23e995affb01bc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-3051-2025-ie00009.svg" width="24pt" height="14pt" src="amt-18-3051-2025-ie00009.png"/></svg:svg></span></span> ratio method for CV-UMR-ToF-ACSM (adapting the appropriate fragmentation table and data pre-treatment for each specific application) to quantify the particulate organic<span id="page3052"/> nitrate fraction at existing monitoring sites in order to improve understanding of nitrate formation and speciation.</p>
ISSN:1867-1381
1867-8548