A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group

Abstract The study of strongly correlated electron systems remains a fundamental challenge in condensed matter physics, particularly in two-dimensional (2D) systems hosting various exotic phases of matter including quantum spin liquids, unconventional superconductivity, and topological orders. Altho...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui-Ke Jin, Rong-Yang Sun, Hong-Hao Tu, Yi Zhou
Format: Article
Language:English
Published: Springer 2025-06-01
Series:AAPPS Bulletin
Online Access:https://doi.org/10.1007/s43673-025-00156-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850119306753343488
author Hui-Ke Jin
Rong-Yang Sun
Hong-Hao Tu
Yi Zhou
author_facet Hui-Ke Jin
Rong-Yang Sun
Hong-Hao Tu
Yi Zhou
author_sort Hui-Ke Jin
collection DOAJ
description Abstract The study of strongly correlated electron systems remains a fundamental challenge in condensed matter physics, particularly in two-dimensional (2D) systems hosting various exotic phases of matter including quantum spin liquids, unconventional superconductivity, and topological orders. Although Density Matrix Renormalization Group (DMRG) has established itself as a pillar for simulating one-dimensional quantum systems, its application to 2D systems has long been hindered by the notorious “local minimum” issues. Recent methodological breakthroughs have addressed this challenge by incorporating Gutzwiller-projected wave functions as initial states for DMRG simulations. This hybrid approach, referred to as DMRG guided by Gutzwiller-projected wave functions (or Gutzwiller-guided DMRG), has demonstrated remarkable improvements in accuracy, efficiency, and the ability to explore exotic quantum phases such as topological orders. This review examines the theoretical underpinnings of this approach, details key algorithmic developments, and showcases its applications in recent studies of 2D quantum systems.
format Article
id doaj-art-09afb3355a2f42f089d44faf3f7ffd96
institution OA Journals
issn 2309-4710
language English
publishDate 2025-06-01
publisher Springer
record_format Article
series AAPPS Bulletin
spelling doaj-art-09afb3355a2f42f089d44faf3f7ffd962025-08-20T02:35:40ZengSpringerAAPPS Bulletin2309-47102025-06-0135111310.1007/s43673-025-00156-8A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization GroupHui-Ke Jin0Rong-Yang Sun1Hong-Hao Tu2Yi Zhou3State Key Laboratory of Quantum Functional Materials, School of Physical Science and Technology, ShanghaiTech UniversityRIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKENFaculty of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität MünchenInstitute of Physics, Chinese Academy of SciencesAbstract The study of strongly correlated electron systems remains a fundamental challenge in condensed matter physics, particularly in two-dimensional (2D) systems hosting various exotic phases of matter including quantum spin liquids, unconventional superconductivity, and topological orders. Although Density Matrix Renormalization Group (DMRG) has established itself as a pillar for simulating one-dimensional quantum systems, its application to 2D systems has long been hindered by the notorious “local minimum” issues. Recent methodological breakthroughs have addressed this challenge by incorporating Gutzwiller-projected wave functions as initial states for DMRG simulations. This hybrid approach, referred to as DMRG guided by Gutzwiller-projected wave functions (or Gutzwiller-guided DMRG), has demonstrated remarkable improvements in accuracy, efficiency, and the ability to explore exotic quantum phases such as topological orders. This review examines the theoretical underpinnings of this approach, details key algorithmic developments, and showcases its applications in recent studies of 2D quantum systems.https://doi.org/10.1007/s43673-025-00156-8
spellingShingle Hui-Ke Jin
Rong-Yang Sun
Hong-Hao Tu
Yi Zhou
A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group
AAPPS Bulletin
title A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group
title_full A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group
title_fullStr A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group
title_full_unstemmed A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group
title_short A promising method for strongly correlated electrons in two dimensions: Gutzwiller-guided Density Matrix Renormalization Group
title_sort promising method for strongly correlated electrons in two dimensions gutzwiller guided density matrix renormalization group
url https://doi.org/10.1007/s43673-025-00156-8
work_keys_str_mv AT huikejin apromisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT rongyangsun apromisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT honghaotu apromisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT yizhou apromisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT huikejin promisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT rongyangsun promisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT honghaotu promisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup
AT yizhou promisingmethodforstronglycorrelatedelectronsintwodimensionsgutzwillerguideddensitymatrixrenormalizationgroup