Physical question, virtual answer: Optimized real-time physical simulations and physics-informed learning approaches for cargo loading stability
Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propo...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Operations Research Perspectives |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2214716025000053 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propose two approaches. We use (a) a physical simulation using a real-time physics engine fitted for cargo loading and (b) a physics-informed learning model trained on cargo loading data. Both approaches are capable of handling dynamic physical behavior, either explicitly through simulation, or implicitly through training a recurrent neural network on physically-biased sequential cargo loading data. Given our two objectives of maximal accuracy and minimal runtime, our benchmarking results show that our approaches can outperform current state-of-the-art static stability methods in terms of accuracy depending on the complexity scenario, but consume more runtime. |
|---|---|
| ISSN: | 2214-7160 |