On univalent functions defined by a generalized Sălăgean operator

We introduce a class of univalent functions Rn(λ,α) defined by a new differential operator Dnf(z), n∈ℕ0={0,1,2,…}, where D0f(z)=f(z), D1f(z)=(1−λ)f(z)+λzf′(z)=Dλf(z), λ≥0, and Dnf(z)=Dλ(Dn−1f(z)). Inclusion relations, extreme points of Rn(λ,α), some convolution properties of functions belonging to R...

Full description

Saved in:
Bibliographic Details
Main Author: F. M. Al-Oboudi
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204108090
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a class of univalent functions Rn(λ,α) defined by a new differential operator Dnf(z), n∈ℕ0={0,1,2,…}, where D0f(z)=f(z), D1f(z)=(1−λ)f(z)+λzf′(z)=Dλf(z), λ≥0, and Dnf(z)=Dλ(Dn−1f(z)). Inclusion relations, extreme points of Rn(λ,α), some convolution properties of functions belonging to Rn(λ,α), and other results are given.
ISSN:0161-1712
1687-0425