Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings

Introduction. In the areas of power engineering where the thermal energy of superheated steam is used, an important aspect of providing the reliability and safety of equipment is the heat resistance of the materials employed. In the manufacture of induction superheaters, the optimal material for the...

Full description

Saved in:
Bibliographic Details
Main Authors: V. N. Varavka, O. V. Kudryakov, V. I. Grishchenko
Format: Article
Language:Russian
Published: Don State Technical University 2023-07-01
Series:Advanced Engineering Research
Subjects:
Online Access:https://www.vestnik-donstu.ru/jour/article/view/2033
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849408985670615040
author V. N. Varavka
O. V. Kudryakov
V. I. Grishchenko
author_facet V. N. Varavka
O. V. Kudryakov
V. I. Grishchenko
author_sort V. N. Varavka
collection DOAJ
description Introduction. In the areas of power engineering where the thermal energy of superheated steam is used, an important aspect of providing the reliability and safety of equipment is the heat resistance of the materials employed. In the manufacture of induction superheaters, the optimal material for the steam pipe (coil) is copper. However, its ultimate resistance to oxidation does not exceed 400 °C, which significantly limits the efficiency of steam generators. Therefore, the objective of the work was to study the kinetics of oxidation of the combined galvanic coating of the Mo-Ni-Cr system applied to copper tubular samples and intended for thermal protection of steam generator coils.Materials and Methods. A combined electroplating of the Mo-Ni-Cr system with a total thickness of 12–35 μm was formed on the experimental copper tubular samples. A Mo sublayer with a thickness of about 1.5 μm on the surface of the copper tube was formed to prevent the diffusion of Cu into the Ni coating. A 1.5 μm thick chromium layer on the coating surface acted as an indicator of the oxidation process. A comparative analysis of the oxidation processes of the copper surface and the combined coating of the Mo-Ni-Cr system on a copper substrate was carried out using the methods of optical and electron microscopy, energy dispersive analysis, and precision determination of the growth parameters of oxide films.Results. The intervals of thermal stability of the copper substrate and nickel coating were experimentally determined. The obtained experimental dependences characterized the parabolic law of copper oxidation with the formation of a single-phase diffusion zone of CuO at temperatures above 350 °C, and nickel at temperatures above 750 °C, when the transition of NiO monoxide into oxide Ni2O3 began. The growth of oxide films according to quadratic laws provided a rapid increase in the thickness of the films, the accumulation of stresses in them, cracking, and chipping.Discussion and Conclusion. It is shown that the Mo-Ni-Cr electroplating is resistant to heating during long-term operation up to temperatures of 750–800 °C. The functional roles of Mo and Cr in the coating architecture were described. The work focused on the applied aspect of using the coating under study to increase the thermal stability of the steam pipelines of industrial induction superheaters with low and medium power.
format Article
id doaj-art-09384897a7754fc191fde05a82d550ad
institution Kabale University
issn 2687-1653
language Russian
publishDate 2023-07-01
publisher Don State Technical University
record_format Article
series Advanced Engineering Research
spelling doaj-art-09384897a7754fc191fde05a82d550ad2025-08-20T03:35:38ZrusDon State Technical UniversityAdvanced Engineering Research2687-16532023-07-0123214015410.23947/2687-1653-2023-23-2-140-1541598Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based CoatingsV. N. Varavka0O. V. Kudryakov1V. I. Grishchenko2Don State Technical UniversityDon State Technical UniversityDon State Technical UniversityIntroduction. In the areas of power engineering where the thermal energy of superheated steam is used, an important aspect of providing the reliability and safety of equipment is the heat resistance of the materials employed. In the manufacture of induction superheaters, the optimal material for the steam pipe (coil) is copper. However, its ultimate resistance to oxidation does not exceed 400 °C, which significantly limits the efficiency of steam generators. Therefore, the objective of the work was to study the kinetics of oxidation of the combined galvanic coating of the Mo-Ni-Cr system applied to copper tubular samples and intended for thermal protection of steam generator coils.Materials and Methods. A combined electroplating of the Mo-Ni-Cr system with a total thickness of 12–35 μm was formed on the experimental copper tubular samples. A Mo sublayer with a thickness of about 1.5 μm on the surface of the copper tube was formed to prevent the diffusion of Cu into the Ni coating. A 1.5 μm thick chromium layer on the coating surface acted as an indicator of the oxidation process. A comparative analysis of the oxidation processes of the copper surface and the combined coating of the Mo-Ni-Cr system on a copper substrate was carried out using the methods of optical and electron microscopy, energy dispersive analysis, and precision determination of the growth parameters of oxide films.Results. The intervals of thermal stability of the copper substrate and nickel coating were experimentally determined. The obtained experimental dependences characterized the parabolic law of copper oxidation with the formation of a single-phase diffusion zone of CuO at temperatures above 350 °C, and nickel at temperatures above 750 °C, when the transition of NiO monoxide into oxide Ni2O3 began. The growth of oxide films according to quadratic laws provided a rapid increase in the thickness of the films, the accumulation of stresses in them, cracking, and chipping.Discussion and Conclusion. It is shown that the Mo-Ni-Cr electroplating is resistant to heating during long-term operation up to temperatures of 750–800 °C. The functional roles of Mo and Cr in the coating architecture were described. The work focused on the applied aspect of using the coating under study to increase the thermal stability of the steam pipelines of industrial induction superheaters with low and medium power.https://www.vestnik-donstu.ru/jour/article/view/2033superheatersheat resistanceoxidation processelectroplatingmicrostructureelectron microscopygravimetric analysis
spellingShingle V. N. Varavka
O. V. Kudryakov
V. I. Grishchenko
Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings
Advanced Engineering Research
superheaters
heat resistance
oxidation process
electroplating
microstructure
electron microscopy
gravimetric analysis
title Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings
title_full Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings
title_fullStr Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings
title_full_unstemmed Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings
title_short Aspects of Thermal Protection of Machine-Building and Power Equipment: Application of Oxidation-Resistant Combined Nickel-Based Coatings
title_sort aspects of thermal protection of machine building and power equipment application of oxidation resistant combined nickel based coatings
topic superheaters
heat resistance
oxidation process
electroplating
microstructure
electron microscopy
gravimetric analysis
url https://www.vestnik-donstu.ru/jour/article/view/2033
work_keys_str_mv AT vnvaravka aspectsofthermalprotectionofmachinebuildingandpowerequipmentapplicationofoxidationresistantcombinednickelbasedcoatings
AT ovkudryakov aspectsofthermalprotectionofmachinebuildingandpowerequipmentapplicationofoxidationresistantcombinednickelbasedcoatings
AT vigrishchenko aspectsofthermalprotectionofmachinebuildingandpowerequipmentapplicationofoxidationresistantcombinednickelbasedcoatings