Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism

This paper proposes a novel fault diagnosis framework that integrates the Osprey–Cauchy–Sparrow Search Algorithm (OCSSA) optimized Variational Mode Decomposition (VMD) with a Bidirectional Temporal Convolutional Network-Attention mechanism (BiTCN-Attention). To address the limitations of empirical p...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuchen Yang, Chunsong Han, Guangtao Ran, Tengyu Ma, Juntao Pan
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/14/5/218
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850255084957466624
author Yuchen Yang
Chunsong Han
Guangtao Ran
Tengyu Ma
Juntao Pan
author_facet Yuchen Yang
Chunsong Han
Guangtao Ran
Tengyu Ma
Juntao Pan
author_sort Yuchen Yang
collection DOAJ
description This paper proposes a novel fault diagnosis framework that integrates the Osprey–Cauchy–Sparrow Search Algorithm (OCSSA) optimized Variational Mode Decomposition (VMD) with a Bidirectional Temporal Convolutional Network-Attention mechanism (BiTCN-Attention). To address the limitations of empirical parameter selection in VMD, OCSSA adaptively optimizes the decomposition parameters (penalty factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and mode number <i>K</i>) through a hybrid strategy that combines chaotic initialization, Osprey-inspired global search, and Cauchy mutation. Subsequently, the BiTCN captures bidirectional temporal dependencies from vibration signals, while the attention mechanism dynamically filters critical fault features, constructing an end-to-end diagnostic model. Experiments on the CWRU dataset demonstrate that the proposed method achieves an average accuracy of 99.44% across 10 fault categories, outperforming state-of-the-art models (e.g., VMD-TCN: 97.5%, CNN-BiLSTM: 84.72%).
format Article
id doaj-art-092e7a2ab2c14cecbbdf5a0e840412a6
institution OA Journals
issn 2076-0825
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Actuators
spelling doaj-art-092e7a2ab2c14cecbbdf5a0e840412a62025-08-20T01:56:57ZengMDPI AGActuators2076-08252025-04-0114521810.3390/act14050218Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA MechanismYuchen Yang0Chunsong Han1Guangtao Ran2Tengyu Ma3Juntao Pan4School of Mechatronics Engineering, Qiqihar University, Qiqihar 161006, ChinaSchool of Mechatronics Engineering, Qiqihar University, Qiqihar 161006, ChinaDepartment of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaSchool of Science, Qiqihar University, Qiqihar 161006, ChinaSchool of Electrical and Information Engineering, North Minzu University, Yinchuan 750030, ChinaThis paper proposes a novel fault diagnosis framework that integrates the Osprey–Cauchy–Sparrow Search Algorithm (OCSSA) optimized Variational Mode Decomposition (VMD) with a Bidirectional Temporal Convolutional Network-Attention mechanism (BiTCN-Attention). To address the limitations of empirical parameter selection in VMD, OCSSA adaptively optimizes the decomposition parameters (penalty factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and mode number <i>K</i>) through a hybrid strategy that combines chaotic initialization, Osprey-inspired global search, and Cauchy mutation. Subsequently, the BiTCN captures bidirectional temporal dependencies from vibration signals, while the attention mechanism dynamically filters critical fault features, constructing an end-to-end diagnostic model. Experiments on the CWRU dataset demonstrate that the proposed method achieves an average accuracy of 99.44% across 10 fault categories, outperforming state-of-the-art models (e.g., VMD-TCN: 97.5%, CNN-BiLSTM: 84.72%).https://www.mdpi.com/2076-0825/14/5/218bearings fault diagnosisbidirectional temporal convolutional network-attention mechanism (BiTCN-Attention)variational mode decomposition (VMD)Osprey–Cauchy–Sparrow search algorithm (OCSSA)
spellingShingle Yuchen Yang
Chunsong Han
Guangtao Ran
Tengyu Ma
Juntao Pan
Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
Actuators
bearings fault diagnosis
bidirectional temporal convolutional network-attention mechanism (BiTCN-Attention)
variational mode decomposition (VMD)
Osprey–Cauchy–Sparrow search algorithm (OCSSA)
title Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
title_full Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
title_fullStr Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
title_full_unstemmed Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
title_short Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
title_sort fault diagnosis of rolling element bearing based on bitcn attention and ocssa mechanism
topic bearings fault diagnosis
bidirectional temporal convolutional network-attention mechanism (BiTCN-Attention)
variational mode decomposition (VMD)
Osprey–Cauchy–Sparrow search algorithm (OCSSA)
url https://www.mdpi.com/2076-0825/14/5/218
work_keys_str_mv AT yuchenyang faultdiagnosisofrollingelementbearingbasedonbitcnattentionandocssamechanism
AT chunsonghan faultdiagnosisofrollingelementbearingbasedonbitcnattentionandocssamechanism
AT guangtaoran faultdiagnosisofrollingelementbearingbasedonbitcnattentionandocssamechanism
AT tengyuma faultdiagnosisofrollingelementbearingbasedonbitcnattentionandocssamechanism
AT juntaopan faultdiagnosisofrollingelementbearingbasedonbitcnattentionandocssamechanism