Self‐Healing COCu‐Tac Hydrogel Enhances iNSCs Transplantation for Spinal Cord Injury by Promoting Mitophagy via the FKBP52/AKT Pathway

Abstract In the realm of neural regeneration post‐spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, prese...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenming Tian, Han‐Jian Hu, Chun Cheung Chan, Tian Hu, Chaoyang Cai, Hong Li, Limin Rong, Gang‐Biao Jiang, Bin Liu
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202407757
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In the realm of neural regeneration post‐spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, presenting formidable barriers. Tacrolimus, known for its dual role as an immunosuppressant and promoter of neural regeneration, holds the potential for enhancing iNSC transplantation. However, systemic administration of tacrolimus often comes with severe side effects. This study pioneers the development of a self‐healing hydrogel with sustained‐release tacrolimus (COCu‐Tac), tailored specifically for iNSC transplantation after spinal cord injury. This research reveals that the sustained release of tacrolimus enhances axonal growth and improves mitochondrial quality control in iNSCs and neurons. Further analysis shows that tacrolimus targets FKBP52 rather than FKBP51, enhancing mitophagy via the FKBP52/AKT pathway. This advanced system demonstrates significant efficacy in promoting neural regeneration and restoring motor function following spinal cord injury.
ISSN:2198-3844