LSANet: Lightweight Super Resolution via Large Separable Kernel Attention for Edge Remote Sensing

In recent years, remote sensing imagery has become indispensable for applications such as environmental monitoring, land use classification, and urban planning. However, the physical constraints of satellite imaging systems frequently limit the spatial resolution of these images, impeding the extrac...

Full description

Saved in:
Bibliographic Details
Main Authors: Tingting Yong, Xiaofang Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7497
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, remote sensing imagery has become indispensable for applications such as environmental monitoring, land use classification, and urban planning. However, the physical constraints of satellite imaging systems frequently limit the spatial resolution of these images, impeding the extraction of fine-grained information critical to downstream tasks. Super-resolution (SR) techniques thus emerge as a pivotal solution to enhance the spatial fidelity of remote sensing images via computational approaches. While deep learning-based SR methods have advanced reconstruction accuracy, their high computational complexity and large parameter counts restrict practical deployment in real-world remote sensing scenarios—particularly on edge or low-power devices. To address this gap, we propose LSANet, a lightweight SR network customized for remote sensing imagery. The core of LSANet is the large separable kernel attention mechanism, which efficiently expands the receptive field while retaining low computational overhead. By integrating this mechanism into an enhanced residual feature distillation module, the network captures long-range dependencies more effectively than traditional shallow residual blocks. Additionally, a residual feature enhancement module, leveraging contrast-aware channel attention and hierarchical skip connections, strengthens the extraction and integration of multi-level discriminative features. This design preserves fine textures and ensures smooth information propagation across the network. Extensive experiments on public datasets such as UC Merced Land Use and NWPU-RESISC45 demonstrate LSANet’s competitive or superior performance compared to state-of-the-art methods. On the UC Merced Land Use dataset, LSANet achieves a PSNR of 34.33, outperforming the best-baseline HSENet with its PSNR of 34.23 by 0.1. For SSIM, LSANet reaches 0.9328, closely matching HSENet’s 0.9332 while demonstrating excellent metric-balancing performance. On the NWPU-RESISC45 dataset, LSANet attains a PSNR of 35.02, marking a significant improvement over prior methods, and an SSIM of 0.9305, maintaining strong competitiveness. These results, combined with the notable reduction in parameters and floating-point operations, highlight the superiority of LSANet in remote sensing image super-resolution tasks.
ISSN:2076-3417