Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods

Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Biezemans, Rutger A., Le Bris, Claude, Legoll, Frédéric, Lozinski, Alexei
Format: Article
Language:English
Published: Académie des sciences 2023-07-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.178/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825205977215926272
author Biezemans, Rutger A.
Le Bris, Claude
Legoll, Frédéric
Lozinski, Alexei
author_facet Biezemans, Rutger A.
Le Bris, Claude
Legoll, Frédéric
Lozinski, Alexei
author_sort Biezemans, Rutger A.
collection DOAJ
description Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.
format Article
id doaj-art-08d093d7d710448a855fe650ecaff1c0
institution Kabale University
issn 1873-7234
language English
publishDate 2023-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-08d093d7d710448a855fe650ecaff1c02025-02-07T13:46:20ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-07-01351S113518010.5802/crmeca.17810.5802/crmeca.178Non-intrusive implementation of a wide variety of Multiscale Finite Element MethodsBiezemans, Rutger A.0Le Bris, Claude1Legoll, Frédéric2Lozinski, Alexei3https://orcid.org/0000-0003-0745-0365MATHERIALS project-team, Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, FranceMATHERIALS project-team, Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, FranceMATHERIALS project-team, Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, FranceMATHERIALS project-team, Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; Université de Franche-Comté, CNRS, LmB, F-25000 Besançon, FranceMultiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.178/Partial differential equationsFinite element methodsMultiscale problemsNon-intrusive implementation
spellingShingle Biezemans, Rutger A.
Le Bris, Claude
Legoll, Frédéric
Lozinski, Alexei
Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods
Comptes Rendus. Mécanique
Partial differential equations
Finite element methods
Multiscale problems
Non-intrusive implementation
title Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods
title_full Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods
title_fullStr Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods
title_full_unstemmed Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods
title_short Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods
title_sort non intrusive implementation of a wide variety of multiscale finite element methods
topic Partial differential equations
Finite element methods
Multiscale problems
Non-intrusive implementation
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.178/
work_keys_str_mv AT biezemansrutgera nonintrusiveimplementationofawidevarietyofmultiscalefiniteelementmethods
AT lebrisclaude nonintrusiveimplementationofawidevarietyofmultiscalefiniteelementmethods
AT legollfrederic nonintrusiveimplementationofawidevarietyofmultiscalefiniteelementmethods
AT lozinskialexei nonintrusiveimplementationofawidevarietyofmultiscalefiniteelementmethods