Reaction Diffusion and Chemotaxis for Decentralized Gathering on FPGAs

We consider here the feasibility of gathering multiple computational resources by means of decentralized and simple local rules. We study such decentralized gathering by means of a stochastic model inspired from biology: the aggregation of the Dictyostelium discoideum cellular slime mold. The enviro...

Full description

Saved in:
Bibliographic Details
Main Authors: Bernard Girau, César Torres-Huitzil, Nikolaos Vlassopoulos, José Hugo Barrón-Zambrano
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Reconfigurable Computing
Online Access:http://dx.doi.org/10.1155/2009/639249
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider here the feasibility of gathering multiple computational resources by means of decentralized and simple local rules. We study such decentralized gathering by means of a stochastic model inspired from biology: the aggregation of the Dictyostelium discoideum cellular slime mold. The environment transmits information according to a reaction-diffusion mechanism and the agents move by following excitation fronts. Despite its simplicity this model exhibits interesting properties of self-organization and robustness to obstacles. We first describe the FPGA implementation of the environment alone, to perform large scale and rapid simulations of the complex dynamics of this reaction-diffusion model. Then we describe the FPGA implementation of the environment together with the agents, to study the major challenges that must be solved when designing a fast embedded implementation of the decentralized gathering model. We analyze the results according to the different goals of these hardware implementations.
ISSN:1687-7195
1687-7209