Biorthogonal Lattice Tunable Wavelet Units and Their Implementation in Convolutional Neural Networks for Computer Vision Problems

This work introduces a universal wavelet unit constructed with a biorthogonal lattice structure which is a novel tunable wavelet unit to enhance image classification and anomaly detection in convolutional neural networks by reducing information loss during pooling. The unit employs a biorthogonal la...

Full description

Saved in:
Bibliographic Details
Main Authors: An D. Le, Shiwei Jin, Sungbal Seo, You-Suk Bae, Truong Q. Nguyen
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of Signal Processing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11039659/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work introduces a universal wavelet unit constructed with a biorthogonal lattice structure which is a novel tunable wavelet unit to enhance image classification and anomaly detection in convolutional neural networks by reducing information loss during pooling. The unit employs a biorthogonal lattice structure to modify convolution, pooling, and down-sampling operations. Implemented in residual neural networks with 18 layers, it improved detection accuracy on CIFAR10 (by 2.67% ), ImageNet1K (by 1.85% ), and the Describable Textures dataset (by 11.81% ), showcasing its advantages in detecting detailed features. Similar gains are achieved in the implementations for residual neural networks with 34 layers and 50 layers. For anomaly detection on the MVTec Anomaly Detection and TUKPCB datasets, the proposed method achieved a competitive performance and better anomaly localization.
ISSN:2644-1322