Influence of the Molecular Adhesion Force on the Indentation Depth of a Particle into the Wafer Surface in the CMP Process

By theoretical calculation, the external force on the particle conveyed by pad asperities and the molecular adhesion force between particle and wafer are compared and analyzed quantitatively. It is confirmed that the molecular adhesion force between particle and wafer has a great influence on the ch...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhou Jianhua, Jiang Jianzhong, He Xueming
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2014/696893
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By theoretical calculation, the external force on the particle conveyed by pad asperities and the molecular adhesion force between particle and wafer are compared and analyzed quantitatively. It is confirmed that the molecular adhesion force between particle and wafer has a great influence on the chemical mechanical polishing (CMP) material removal process. Considering the molecular adhesion force between particle and wafer, a more precise model for the indentation of a particle into the wafer surface is developed in this paper, and the new model is compared with the former model which neglected the molecular adhesion force. Through theoretical analyses, an approach and corresponding critical values are applied to estimate whether the molecular adhesion force in CMP can be neglected. These methods can improve the precision of the material removal model of CMP.
ISSN:1687-8434
1687-8442