Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations
This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution 𝑢(𝑥) is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution 𝑢𝑛(𝑥)...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2012/839836 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution 𝑢(𝑥) is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution 𝑢𝑛(𝑥) is obtained and it is proved to converge to the exact solution 𝑢(𝑥). Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |