The effect of divertor closure on the impurity stagnation point in detached L-mode discharges on DIII-D

This paper presents experimental measurements of the location of the impurity flow stagnation point in the scrape-off-layer (SOL) of a tokamak plasma. Coherence imaging of carbon-2+ emission (465 nm) is used to track the main-chamber impurity velocity of DIII-D L-mode plasmas with B×∇B out of the di...

Full description

Saved in:
Bibliographic Details
Main Authors: M.G. Burke, F. Scotti, S.L. Allen, W.H. Meyer, A. Holm, M. Zhao, A.G. McLean, M. Fenstermacher, H.Q. Wang, R. Wilcox
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179125000286
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents experimental measurements of the location of the impurity flow stagnation point in the scrape-off-layer (SOL) of a tokamak plasma. Coherence imaging of carbon-2+ emission (465 nm) is used to track the main-chamber impurity velocity of DIII-D L-mode plasmas with B×∇B out of the divertor. The C2+ flow stagnates near the top or crown of the plasma when an open divertor (no baffling) is used. In contrast, with matched conditions and using a divertor with baffling, the C2+ flow stagnates near the outer divertor leg (X-point). The C2+ poloidal emission is hollow, peaking near the divertor legs, in the open configuration. In contrast, in the closed configuration, the C2+ emission is flat through most of the main-chamber SOL. Changing divertor dissipation from attached to detached conditions had only a minor effect on the main-chamber midplane impurity velocity. Numerical simulations using the multi-fluid edge transport code UEDGE including cross-field drifts show qualitative agreement with the open divertor experimental result.
ISSN:2352-1791