A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies

In this work, we study a Markov model of cyber threats that act on a computer system. Within the framework of the model the computer system is considered as a system with failures and recoveries by analogy with models of reliability theory. To estimate functionally-temporal properties of the system...

Full description

Saved in:
Bibliographic Details
Main Authors: Adil A. Kassenov, Alexey A. Magazev, Valeriya F. Tsyrulnik
Format: Article
Language:English
Published: Yaroslavl State University 2020-03-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/1292
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849688348824698880
author Adil A. Kassenov
Alexey A. Magazev
Valeriya F. Tsyrulnik
author_facet Adil A. Kassenov
Alexey A. Magazev
Valeriya F. Tsyrulnik
author_sort Adil A. Kassenov
collection DOAJ
description In this work, we study a Markov model of cyber threats that act on a computer system. Within the framework of the model the computer system is considered as a system with failures and recoveries by analogy with models of reliability theory. To estimate functionally-temporal properties of the system we introduce a parameter called the lifetime of the system and defined as the number of transitions of the corresponding Markov chain until the first hit to the final state. Since this random variable plays an important role at evaluating a security level of the computer system, we investigate in detail its random distribution for the case of mutually exclusive cyber threats; in particular, we derive explicit analytical formulae for numerical characteristics of its distribution: expected value and dispersion. Then we generalize substantially the Markov model dropping the assumption that cyber threats acting on the system are mutually exclusive. This modification leads to an extended Markov chain that has (at least qualitatively) the same structure as the original chain. This fact allowed to generalize the above analytical results for the expected value and dispersion of the lifetime to the case of non-mutually exclusive cyber threats. At the end of the work the Markov model for non-mutually exclusive cyber threats is used to state a problem of finding an optimal configuration of security remedies in a given cyber threat space. It is essential that the formulated optimization problems belong to the class of non-linear discrete (Boolean) programming problems. Finally, we consider an example that illustrate the solution of the problem on selecting the optimal set of security remedies for a computer system.
format Article
id doaj-art-08702396e3de4b1bbe902f0f3f64a4fa
institution DOAJ
issn 1818-1015
2313-5417
language English
publishDate 2020-03-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj-art-08702396e3de4b1bbe902f0f3f64a4fa2025-08-20T03:22:03ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172020-03-0127110812310.18255/1818-1015-2020-1-108-123963A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security RemediesAdil A. Kassenov0Alexey A. Magazev1Valeriya F. Tsyrulnik2Omsk State Technical UniversityOmsk State Technical UniversityOmsk State Technical UniversityIn this work, we study a Markov model of cyber threats that act on a computer system. Within the framework of the model the computer system is considered as a system with failures and recoveries by analogy with models of reliability theory. To estimate functionally-temporal properties of the system we introduce a parameter called the lifetime of the system and defined as the number of transitions of the corresponding Markov chain until the first hit to the final state. Since this random variable plays an important role at evaluating a security level of the computer system, we investigate in detail its random distribution for the case of mutually exclusive cyber threats; in particular, we derive explicit analytical formulae for numerical characteristics of its distribution: expected value and dispersion. Then we generalize substantially the Markov model dropping the assumption that cyber threats acting on the system are mutually exclusive. This modification leads to an extended Markov chain that has (at least qualitatively) the same structure as the original chain. This fact allowed to generalize the above analytical results for the expected value and dispersion of the lifetime to the case of non-mutually exclusive cyber threats. At the end of the work the Markov model for non-mutually exclusive cyber threats is used to state a problem of finding an optimal configuration of security remedies in a given cyber threat space. It is essential that the formulated optimization problems belong to the class of non-linear discrete (Boolean) programming problems. Finally, we consider an example that illustrate the solution of the problem on selecting the optimal set of security remedies for a computer system.https://www.mais-journal.ru/jour/article/view/1292cyber threatmarkov chainsecurity remedyoptimization
spellingShingle Adil A. Kassenov
Alexey A. Magazev
Valeriya F. Tsyrulnik
A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies
Моделирование и анализ информационных систем
cyber threat
markov chain
security remedy
optimization
title A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies
title_full A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies
title_fullStr A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies
title_full_unstemmed A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies
title_short A Markov Model of Non-Mutually Exclusive Cyber Threats and its Applications for Selecting an Optimal Set of Information Security Remedies
title_sort markov model of non mutually exclusive cyber threats and its applications for selecting an optimal set of information security remedies
topic cyber threat
markov chain
security remedy
optimization
url https://www.mais-journal.ru/jour/article/view/1292
work_keys_str_mv AT adilakassenov amarkovmodelofnonmutuallyexclusivecyberthreatsanditsapplicationsforselectinganoptimalsetofinformationsecurityremedies
AT alexeyamagazev amarkovmodelofnonmutuallyexclusivecyberthreatsanditsapplicationsforselectinganoptimalsetofinformationsecurityremedies
AT valeriyaftsyrulnik amarkovmodelofnonmutuallyexclusivecyberthreatsanditsapplicationsforselectinganoptimalsetofinformationsecurityremedies
AT adilakassenov markovmodelofnonmutuallyexclusivecyberthreatsanditsapplicationsforselectinganoptimalsetofinformationsecurityremedies
AT alexeyamagazev markovmodelofnonmutuallyexclusivecyberthreatsanditsapplicationsforselectinganoptimalsetofinformationsecurityremedies
AT valeriyaftsyrulnik markovmodelofnonmutuallyexclusivecyberthreatsanditsapplicationsforselectinganoptimalsetofinformationsecurityremedies