Astronomical Chronology Framework of the Lingshui Formation (Oligocene) in the Northern South China Sea

This study has determined the period of sedimentation of the Lingshui Formation as the Oligocene (Rupelian-Chattian) through biostratigraphic data, including planktonic foraminifera zonation. The astronomical timescale framework for the Lingshui Formation was accurately constructed by integrating ge...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianhao Liang, Yaning Wang, Shangfeng Zhang, Yubing Liang, Gaoyang Gong, Rui Han
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/1/86
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study has determined the period of sedimentation of the Lingshui Formation as the Oligocene (Rupelian-Chattian) through biostratigraphic data, including planktonic foraminifera zonation. The astronomical timescale framework for the Lingshui Formation was accurately constructed by integrating geophysical logging data and employing a multidisciplinary approach that includes time series analysis, cyclostratigraphy, astronomical dating, and Power Ratio Accumulation (PRA) methods. Sensitivity analysis of PRA has shown that natural gamma (GR) is the optimal paleoclimatic proxy, laying the foundation for subsequent analyses. The optimal sedimentation rate for the Lingshui Formation, determined by combining the coefficient of correlation (COCO) method with PRA analysis, is 5–5.4 cm/kyr. The duration of the Lingshui Formation was established at 5.02 Ma (28.52 Ma–23.5 Ma) based on time series analysis and astronomical tuning. The sediment noise model has revealed that the ~1.2 Myr obliquity modulation period has a significant impact on sea-level changes, further confirming the stratigraphic control of astronomical forcing on the sedimentation rate of the Lingshui Formation. This study establishes a high-precision astronomical timescale framework for the Lingshui Formation and provides a robust methodology, offering scientific basis for the research in astronomical chronostratigraphy and cycle stratigraphy, which has significant potential implications.
ISSN:2077-1312