Design and Fabrication of Flexible Nanoantenna-Based Sensor Using Graphene-Coated Carbon Cloth

Carbon nanomaterials have attracted significant consideration and concern due to the unique chemical and physical properties. Recently, nanodiamonds, graphene, and carbon nanotubes are served as electrodes, hydrogen storage elements, and composite materials. In this work, a 5 GHz graphene nanoantenn...

Full description

Saved in:
Bibliographic Details
Main Authors: Senthil Kumar Kandasamy, S. Maheswaran, S. Anbu Karuppusamy, J. Indra, R. Anand, P. Rega, A. Kavitha, K. Immanuvel Arokia James, Kasthuri Nehru, K. Kathiresan
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2022/2265904
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon nanomaterials have attracted significant consideration and concern due to the unique chemical and physical properties. Recently, nanodiamonds, graphene, and carbon nanotubes are served as electrodes, hydrogen storage elements, and composite materials. In this work, a 5 GHz graphene nanoantenna that falls inside the very-small-aperture terminal (VSAT) C-band range has been fabricated. A graphene substrate with a thickness of h = 0.5 cm is formed which is then used for fabricating a graphene nanoantenna working at 5 GHz. To design and simulate the antenna, Analysis System (ANSYS) electromagnetic desktop software was used. Using the designed graphene antenna, the parameters such as voltage standing wave ratio, three-dimensional radiation pattern, and directivity were obtained. After designing of the antenna using ANSYS software, it was physically fabricated. The graphene was used as a dielectric, copper sheet acted as a patch over as well as ground. Finally, the design was testedusing Vector Network Analyzer (Model: N9925A) and the transmission range was found as 5 GHz.
ISSN:1687-8442