Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays
We consider a mathematical model that describes the interactions ofthe HIV virus, CD4 cells and CTLs within host, which is amodification of some existing models by incorporating (i) twodistributed kernels reflecting the variance of time for virus toinvade into cells and the variance of time for inva...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2012-12-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2013.10.483 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a mathematical model that describes the interactions ofthe HIV virus, CD4 cells and CTLs within host, which is amodification of some existing models by incorporating (i) twodistributed kernels reflecting the variance of time for virus toinvade into cells and the variance of time for invaded virions toreproduce within cells; (ii) a nonlinear incidence function $f$ forvirus infections, and (iii) a nonlinear removal rate function $h$for infected cells. By constructing Lyapunov functionals and subtleestimates of the derivatives of these Lyapunov functionals, we shownthat the model has the threshold dynamics: if the basicreproduction number (BRN) is less than or equal to one, then theinfection free equilibrium is globally asymptotically stable,meaning that HIV virus will be cleared; whereas if the BRN is largerthan one, then there exist an infected equilibrium which is globallyasymptotically stable, implying that the HIV-1 infection willpersist in the host and the viral concentration will approach apositive constant level. This together with thedependence/independence of the BRN on $f$ and $h$ reveals the effectof the adoption of these nonlinear functions. |
---|---|
ISSN: | 1551-0018 |