A continuous version of multiple zeta functions and multiple zeta values

In this paper we define a continuous version of multiple zeta functions. They can be analytically continued to meromorphic functions on $\mathbb{C}^r$ with only simple poles at some special hyperplanes. The evaluations of these functions at positive integers (continuous multiple zeta values) satisfy...

Full description

Saved in:
Bibliographic Details
Main Author: Li, Jiangtao
Format: Article
Language:English
Published: Académie des sciences 2023-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.440/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206206411571200
author Li, Jiangtao
author_facet Li, Jiangtao
author_sort Li, Jiangtao
collection DOAJ
description In this paper we define a continuous version of multiple zeta functions. They can be analytically continued to meromorphic functions on $\mathbb{C}^r$ with only simple poles at some special hyperplanes. The evaluations of these functions at positive integers (continuous multiple zeta values) satisfy the shuffle product. We give a detailed analysis about the depth structure of continuous multiple zeta values. There are also sum formulas for continuous multiple zeta values. Lastly we calculate some special continuous multiple zeta values in terms of special values of multiple polylogarithms.
format Article
id doaj-art-082c289346774028a1b28597b3838ea1
institution Kabale University
issn 1778-3569
language English
publishDate 2023-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-082c289346774028a1b28597b3838ea12025-02-07T11:07:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-03-01361G369771310.5802/crmath.44010.5802/crmath.440A continuous version of multiple zeta functions and multiple zeta valuesLi, Jiangtao0School of Mathematics and Statistics, HNP-LAMA, Central South University, Hunan Province, ChinaIn this paper we define a continuous version of multiple zeta functions. They can be analytically continued to meromorphic functions on $\mathbb{C}^r$ with only simple poles at some special hyperplanes. The evaluations of these functions at positive integers (continuous multiple zeta values) satisfy the shuffle product. We give a detailed analysis about the depth structure of continuous multiple zeta values. There are also sum formulas for continuous multiple zeta values. Lastly we calculate some special continuous multiple zeta values in terms of special values of multiple polylogarithms.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.440/
spellingShingle Li, Jiangtao
A continuous version of multiple zeta functions and multiple zeta values
Comptes Rendus. Mathématique
title A continuous version of multiple zeta functions and multiple zeta values
title_full A continuous version of multiple zeta functions and multiple zeta values
title_fullStr A continuous version of multiple zeta functions and multiple zeta values
title_full_unstemmed A continuous version of multiple zeta functions and multiple zeta values
title_short A continuous version of multiple zeta functions and multiple zeta values
title_sort continuous version of multiple zeta functions and multiple zeta values
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.440/
work_keys_str_mv AT lijiangtao acontinuousversionofmultiplezetafunctionsandmultiplezetavalues
AT lijiangtao continuousversionofmultiplezetafunctionsandmultiplezetavalues