Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.

Humans are rarely faced with one simple task, but are typically confronted with complex stimulus constellations and varying stimulus-relevance in a given situation. Through modifying the prototypical stop-signal task and by combined recording and analysis of electroencephalography (EEG) and function...

Full description

Saved in:
Bibliographic Details
Main Authors: Christina F Lavallee, Christoph S Herrmann, Riklef Weerda, René J Huster
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096159&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850191920521805824
author Christina F Lavallee
Christoph S Herrmann
Riklef Weerda
René J Huster
author_facet Christina F Lavallee
Christoph S Herrmann
Riklef Weerda
René J Huster
author_sort Christina F Lavallee
collection DOAJ
description Humans are rarely faced with one simple task, but are typically confronted with complex stimulus constellations and varying stimulus-relevance in a given situation. Through modifying the prototypical stop-signal task and by combined recording and analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), we studied the effects of stimulus relevance for the generation of a response or its inhibition. Stimulus response mappings were modified by contextual cues, indicating which of two different stimuli following a go stimulus was relevant for stopping. Overall, response inhibition, that is comparing successful stopping to a stop-signal against go-signal related processes, was associated with increased activity in right inferior and left midfrontal regions, as well as increased EEG delta and theta power; however, stimulus-response conditions in which the most infrequent stop-signal was relevant for inhibition, were associated with decreased activity in regions typically involved in response inhibition, as well as decreased activity in the delta and theta bands as compared to conditions wherein the relevant stop-signal frequency was higher. Behaviorally, this (aforementioned) condition, which demanded inhibition only from the most infrequent stimulus, was also associated with reduced reaction times and lower error rates. This pattern of results does not align with typical stimulus frequency-driven findings and suggests interplay between task relevance and stimulus frequency of the stop-signal. Moreover, with a multimodal EEG-fMRI analysis, we demonstrated significant parameterization for response inhibition with delta, theta and beta time-frequency values, which may be interpreted as reflecting conflict monitoring, evaluative and/or motor processes as suggested by previous work (Huster et al., 2013; Aron, 2011). Further multimodal results suggest a possible neurophysiological and behavioral benefit under conditions whereby the most infrequent stimulus demanded inhibition, indicating that the frequency of the stop-signal interacts with the current stimulus-response contingency. These results demonstrate that response inhibition is prone to influence from other cognitive functions, making it difficult to dissociate real inhibitory capabilities from the influence of moderating mechanisms.
format Article
id doaj-art-080a2bff896c468281ae1f4791a6a263
institution OA Journals
issn 1932-6203
language English
publishDate 2014-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-080a2bff896c468281ae1f4791a6a2632025-08-20T02:14:43ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0194e9615910.1371/journal.pone.0096159Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.Christina F LavalleeChristoph S HerrmannRiklef WeerdaRené J HusterHumans are rarely faced with one simple task, but are typically confronted with complex stimulus constellations and varying stimulus-relevance in a given situation. Through modifying the prototypical stop-signal task and by combined recording and analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), we studied the effects of stimulus relevance for the generation of a response or its inhibition. Stimulus response mappings were modified by contextual cues, indicating which of two different stimuli following a go stimulus was relevant for stopping. Overall, response inhibition, that is comparing successful stopping to a stop-signal against go-signal related processes, was associated with increased activity in right inferior and left midfrontal regions, as well as increased EEG delta and theta power; however, stimulus-response conditions in which the most infrequent stop-signal was relevant for inhibition, were associated with decreased activity in regions typically involved in response inhibition, as well as decreased activity in the delta and theta bands as compared to conditions wherein the relevant stop-signal frequency was higher. Behaviorally, this (aforementioned) condition, which demanded inhibition only from the most infrequent stimulus, was also associated with reduced reaction times and lower error rates. This pattern of results does not align with typical stimulus frequency-driven findings and suggests interplay between task relevance and stimulus frequency of the stop-signal. Moreover, with a multimodal EEG-fMRI analysis, we demonstrated significant parameterization for response inhibition with delta, theta and beta time-frequency values, which may be interpreted as reflecting conflict monitoring, evaluative and/or motor processes as suggested by previous work (Huster et al., 2013; Aron, 2011). Further multimodal results suggest a possible neurophysiological and behavioral benefit under conditions whereby the most infrequent stimulus demanded inhibition, indicating that the frequency of the stop-signal interacts with the current stimulus-response contingency. These results demonstrate that response inhibition is prone to influence from other cognitive functions, making it difficult to dissociate real inhibitory capabilities from the influence of moderating mechanisms.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096159&type=printable
spellingShingle Christina F Lavallee
Christoph S Herrmann
Riklef Weerda
René J Huster
Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
PLoS ONE
title Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
title_full Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
title_fullStr Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
title_full_unstemmed Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
title_short Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
title_sort stimulus response mappings shape inhibition processes a combined eeg fmri study of contextual stopping
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096159&type=printable
work_keys_str_mv AT christinaflavallee stimulusresponsemappingsshapeinhibitionprocessesacombinedeegfmristudyofcontextualstopping
AT christophsherrmann stimulusresponsemappingsshapeinhibitionprocessesacombinedeegfmristudyofcontextualstopping
AT riklefweerda stimulusresponsemappingsshapeinhibitionprocessesacombinedeegfmristudyofcontextualstopping
AT renejhuster stimulusresponsemappingsshapeinhibitionprocessesacombinedeegfmristudyofcontextualstopping