A Generalized Span–Depth Ratio Model for Minimum Thickness Design of Flat Plate Slabs Incorporating ACI Deflection Criteria
This study proposes a unified span–depth ratio model aimed at optimizing the minimum thickness of reinforced concrete flat plate slabs, addressing the limitations of the simplified span-to-depth ratio provisions in ACI 318. The existing code does not fully consider critical parameters such as panel...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/13/2157 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study proposes a unified span–depth ratio model aimed at optimizing the minimum thickness of reinforced concrete flat plate slabs, addressing the limitations of the simplified span-to-depth ratio provisions in ACI 318. The existing code does not fully consider critical parameters such as panel aspect ratio, reinforcement ratio, support conditions, concrete strength, and long-term deflections due to creep and shrinkage. To overcome these shortcomings, a generalized analytical model is developed based on fundamental deflection theory, incorporating both immediate and time-dependent behaviors. The model is validated through numerical simulations applied to interior, edge, and corner slab panels subjected to various geometric configurations, loading scenarios, and reinforcement levels. Results from the parametric study indicate that deflection control improves significantly with higher reinforcement ratios and lower aspect ratios, leading to more efficient slab designs. Comparisons with ACI 318 guidelines reveal that the proposed model provides enhanced accuracy, particularly for irregular slab geometries and stringent deflection limits (e.g., L/480). The findings highlight that conventional code-based thickness limits may underestimate slab depth requirements in many practical scenarios. The study advocates for integrating deflection-based considerations into the preliminary design stage, offering structural engineers a more robust and practical tool to ensure serviceability while optimizing material use. |
|---|---|
| ISSN: | 2075-5309 |