Accelerating electrostatic particle-in-cell simulation: A novel FPGA-based approach for efficient plasma investigations.

Particle-in-cell (PIC) simulation serves as a widely employed method for investigating plasma, a prevalent state of matter in the universe. This simulation approach is instrumental in exploring characteristics such as particle acceleration by turbulence and fluid, as well as delving into the propert...

Full description

Saved in:
Bibliographic Details
Main Authors: Abedalmuhdi Almomany, Muhammed Sutcu, Babul Salam K S M Kader Ibrahim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302578&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Particle-in-cell (PIC) simulation serves as a widely employed method for investigating plasma, a prevalent state of matter in the universe. This simulation approach is instrumental in exploring characteristics such as particle acceleration by turbulence and fluid, as well as delving into the properties of plasma at both the kinetic scale and macroscopic processes. However, the simulation itself imposes a significant computational burden. This research proposes a novel implementation approach to address the computationally intensive phase of the electrostatic PIC simulation, specifically the Particle-to-Interpolation phase. This is achieved by utilizing a high-speed Field Programmable Gate Array (FPGA) computation platform. The suggested approach incorporates various optimization techniques and diminishes memory access latency by leveraging the flexibility and performance attributes of the Intel FPGA device. The results obtained from our study highlight the effectiveness of the proposed design, showcasing the capability to execute hundreds of functional operations in each clock cycle. This stands in contrast to the limited operations performed in a general-purpose single-core computation platform (CPU). The suggested hardware approach is also scalable and can be deployed on more advanced FPGAs with higher capabilities, resulting in a significant improvement in performance.
ISSN:1932-6203